Evaluation of Rotation Capacity of RHS Aluminium Alloy Beams by FEM Simulation: Temper T4

Article Preview

Abstract:

The aim of this work consists in the numerical assessment of the moment-rotation behaviour of RHS aluminium alloy beams subjected to non-uniform bending through an extensive parametric analysis performed by means of FE code ABAQUS investigating the influence of the main geometrical and mechanical parameters. In particular, the influence of the flange slenderness, web stiffness and moment gradient are investigated by adopting the constitutive law proposed by Eurocode 9 based on the Ramberg-Osgood model whose shape factor characterise the hardening behaviour of the material. The investigations concern these factors considered separately as well as their interaction. The results are herein reported with reference to temper T4 and show the importance of some of the investigated parameters on both buckling strength and rotation capacity of aluminium alloy beams.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

288-294

Citation:

Online since:

September 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] European Committee for Standardisation, 'Eurocode 3: Design of Steel Structures. ', ENV 1993-1. 1, Brussels, Belgium, (2005).

Google Scholar

[2] European Committee for Standardisation, 'Eurocode 9: Design of Aluminium structures, ENV 1999-1. 1, Brussels, Belgium, (2007).

Google Scholar

[3] Moen L, Hopperstad OS, Langseth M. Rotational capacity of aluminium beams subjected to non-uniform bending, - Part I: Experiments. Journal of Structural Engineering ASCE 1999; 125(8): 910–20.

DOI: 10.1061/(asce)0733-9445(1999)125:8(910)

Google Scholar

[4] Faella C., Mazzolani F.M., Piluso V., Rizzano G. Local buckling of aluminium members: testing and classification,. Journal of Structural Engineering, ASCE 2000; 126 (3): 353–60.

DOI: 10.1061/(asce)0733-9445(2000)126:3(353)

Google Scholar

[5] Lay, M. G., and Galambos, T. V. (1967). 'Inelastic beams under moment gradient. ', J. Struct. Div., ASCE, 93(1), 381–399.

DOI: 10.1061/jsdeag.0001589

Google Scholar

[6] Lukey, A. F., and Adams, P. F. (1969). 'Rotation capacity of wide-flange beams under moment gradient. ', J. Struct. Div., ASCE, 96(6), 1173– 1188.

DOI: 10.1061/jsdeag.0002290

Google Scholar

[7] ABAQUS. User's Manual: Volume III: Materials, (2010).

Google Scholar

[8] ABAQUS. User's Manual: Volume IV: Elements, (2010).

Google Scholar

[9] Opheim, B. S. (1996). 'Bending of thin-walled aluminum extrusions', Dr. ing. thesis, Div. of Struct. Engrg., Norwegian University of Science and Technology, Trondheim, Norway.

Google Scholar

[10] Moen L, De Matteis G, Hopperstad OS, Langseth M, Landolfo R, Mazzolani FM. Rotational capacity of aluminium beams subjected to non-uniform bending—Part II: Numerical model. Journal of Structural Engineering ASCE 1999; 125(8): 921–9.

DOI: 10.1061/(asce)0733-9445(1999)125:8(921)

Google Scholar

[11] De Matteis G., Landolfo R., Manganiello M., Mazzolani F.M., Inelastic Behaviour of I-shaped aluminium beams: numerical analysis and cross-sectional classification, Computer & Structures, Vol. 82, pp.2157-2171.

DOI: 10.1016/j.compstruc.2004.03.071

Google Scholar

[12] Tryland T., Hopperstad O.S., Langseth M. Finite-Element Modeling of Beams under Concentrated Loading, Journal of Structural Engineering, ASCE, Vol. 127, Issue 2, (2001).

DOI: 10.1061/(asce)0733-9445(2001)127:2(176)

Google Scholar

[13] Su M-N; Young B., Gardner L. Continuous Beams of Aluminum Alloy Tubular Cross Sections. I: Tests and FE Model Validation, Journal of Structural Engineering, ASCE, Vol. 141 Issue 9, (2015).

DOI: 10.1061/(asce)st.1943-541x.0001214

Google Scholar

[14] Su M-N; Young B., Gardner L. Continuous Beams of Aluminum Alloy Tubular Cross Sections. II: Parametric Study and Design, Journal of Structural Engineering, ASCE, Vol. 141 Issue 9, (2015).

DOI: 10.1061/(asce)st.1943-541x.0001215

Google Scholar

[15] De Matteis G, Moen L, Hopperstad OS, Langseth M, Landolfo R, Mazzolani FM. Cross-sectional classification for aluminium beams—parametric study. J Struct Eng ASCE 2001; 127(3): 271–9.

DOI: 10.1061/(asce)0733-9445(2001)127:3(271)

Google Scholar

[16] Palazzo, B., Castaldo, P., Marino, I. The Dissipative Column: A New Hysteretic Damper, Buildings 5(1), 163-178; (2015).

DOI: 10.3390/buildings5010163

Google Scholar

[17] Mazzolani F. M., Piluso V. Evaluation of the rotational capacity of steel beams and beam-columns. In: 1st Cost C1 Workshop, Strasbourg, France, (1992).

Google Scholar

[18] Kemp, A. R. 'Factors affecting the rotation capacity of plastically designed members. ', The Struct. Engr., London, 64B(2), 28–35, (1986).

Google Scholar

[19] Kato, B. 'Rotation capacity of steel members subject to local buckling. ', Proc., 9th World Conf. on Earthquake Engrg., Vol. IV, 115–120, (1989).

Google Scholar

[20] Castaldo P., Nastri E., Piluso V. Proposal for an empirical evaluation of rotation capacity of RHS aluminium alloy beams based on FEM simulations, Incalco2016, Napoli, 21-23 September (2016).

DOI: 10.4028/www.scientific.net/kem.710.231

Google Scholar

[21] Hopperstad, O.S., Modeling of cyclic plasticity with application to steel and aluminium structures, Dr. Ing. Thesis, Div. of Struct. Engrg., Institute of Technology, Trondheim, Norway.

Google Scholar

[22] Mazzolani FM. Aluminium alloy structures. 2nd ed. London (UK): Chapman & Hall; (1995).

Google Scholar