[1]
J. Rodriguez, L. Ortega, J. Casal Load carrying capacity of concrete structures with corroded reinforcement, 4th Int. Conf. on Structure Faults and Repair, M. Forde, ed., Engineering Tech. Press, Edinburgh, U.K., (1995) 189–199.
Google Scholar
[2]
D. Coronelli, P. Gambarova, Structural Assessment of Corroded Reinforced Concrete Beams: Modeling Guidelines, Journal of Structural Engineering, ASCE. 130 8 (2004) 1214-1224.
DOI: 10.1061/(asce)0733-9445(2004)130:8(1214)
Google Scholar
[3]
T. El Maadawi, K. Soudki, Effectiveness of impressed current technique to simulate corrosion of steel reinforcement in concrete, Journal of Materials in Civil Engineering, ASCE. 15 1 (2003) 41-47.
DOI: 10.1061/(asce)0899-1561(2003)15:1(41)
Google Scholar
[4]
C. Alonso, C. Andrade, J. Rodriguez, J.M. Diez, Factors controlling cracking of concrete affected by reinforcement corrosion, RILEM Mat. Struct. /Matériaux et Constructions. 31, August–September (1998) 435– 441.
DOI: 10.1007/bf02480466
Google Scholar
[5]
Y. Yuan, Y. Ji, S.P. Shah, Comparison of Two Accelerated Corrosion Techniques for Concrete Structures, ACI Structural Journal. 104 3 (2007) 344-347.
Google Scholar
[6]
K. Lundgren, M. Tahershamsi, K. Zandi Hanjari, M. Plos, Tests on Anchorage of Naturally Corroded Reinforcement in Concrete, RILEM Mat. Struct. /Matériaux et Constructions. 48 7 (2015) 2009-(2022).
DOI: 10.1617/s11527-014-0290-y
Google Scholar
[7]
A. Castel, R. Francois, G. Arliguie, Mechanical behaviour of corroded reinforced concrete beams. II: Bond and notch effects, RILEM Mat. Struct. /Matériaux et Constructions. 33, (2000) 545–551.
DOI: 10.1007/bf02480534
Google Scholar
[8]
H. V. Dang, R. François, Influence of long-term corrosion in chloride environment on mechanical behaviour of RC beam, Engineering Structures 48 (2013) 558–568.
DOI: 10.1016/j.engstruct.2012.09.021
Google Scholar
[9]
W. Zhu, R. François, D. Coronelli, D. Cleland, Effect of corrosion of reinforcement on the mechanical behaviour of highly corroded RC beams, Engineering Structures. 56 (2013) 544–554.
DOI: 10.1016/j.engstruct.2013.04.017
Google Scholar
[10]
W. Zhu, R. François, D. Cleland, D. Coronelli, Failure mode transitions of corroded deep beams exposed to marine environment for long period Engineering Structures 96 (2015) 66–77.
DOI: 10.1016/j.engstruct.2015.04.004
Google Scholar
[11]
K. Zandi Hanjari, P. Kettil, K. Lundgren, Analysis of the Mechanical Behavior of Corroded Reinforced Concrete Structures, ACI Structural Journal. 108 (5) (2011) 532-541.
DOI: 10.1201/9781439828434.ch299
Google Scholar
[12]
P.E. Regan, I.L. Kennedy Reid, Assessment of concrete structures affected by delamination: 1 – effect of bond loss, Studies and Researches - Annual Review of Structural Concrete. 29, (2009) 245–275.
Google Scholar
[13]
P.E. Regan, I.L. Kennedy Reid, Assessment of concrete structures affected by delamination: 2 – Bond-shear interaction, Studies and Researches - Annual Review of Structural Concrete, Vol. 30 (2010) 101-130.
Google Scholar
[14]
Eurocode 2, Design of Concrete Structures. Part 1-1: General Rules and Rules for Building (ENV1992-1-1) (1992) 225 pp.
Google Scholar
[15]
D.V. Val, Deterioration of Strength of RC Beams due to Corrosion and Its Influence on Beam Reliability, Journal of Structural Engineering, ASCE. 133 9 (2007) 1297-1306.
DOI: 10.1061/(asce)0733-9445(2007)133:9(1297)
Google Scholar
[16]
J.A. Gonzales, C. Andrade, C., Alonso, S. Feliu, (1995) Comparison of rates of general corrosion and maximum pitting penetration on concrete embedded steel reinforcement., Cem. Concr. Res. 25 2 (1995) 257–264.
DOI: 10.1016/0008-8846(95)00006-2
Google Scholar
[17]
J. Cairns, Bond and anchorage of embedded steel reinforcement in fib Model Code 2010, Structural Concrete. 1 (2015) pp.45-55.
DOI: 10.1002/suco.201400043
Google Scholar