[1]
L. Bertolini, B. Elsener, P. Pedeferri, E. Redaelli, R. Polder, Corrosion of steel in concrete – prevention, diagnosis, repair, 2nd ed., Wiley VCH, Weinheim, (2013).
DOI: 10.1002/9783527651696
Google Scholar
[2]
EN 206-1, Concrete Part 1: specification, performance, production and conformity; (2000).
Google Scholar
[3]
EN 1992-1-1, Eurocode 2: design of concrete structures – Part 1-1: general rules and rules for, buildings; (2004).
Google Scholar
[4]
P. Pedeferri, Cathodic protection and cathodic prevention, Construction and building materials, 10 (1996), 391-402.
DOI: 10.1016/0950-0618(95)00017-8
Google Scholar
[5]
L. Bertolini, P. Pedeferri, Laboratory and field experience on the use of stainless steel to improve durability of reinforced concrete, Corrosion Reviews, 20 (1-2), (2002), 129-152.
DOI: 10.1515/corrrev.2002.20.1-2.129
Google Scholar
[6]
M. Gastaldi, L. Bertolini, Effect of temperature on the corrosion behaviour of low-nickel duplex stainless steel bars in concrete. Cement Concrete Res, 56 (2014), 52–60.
DOI: 10.1016/j.cemconres.2013.11.004
Google Scholar
[7]
Model code for service life design, International Federation for Structural Concrete, FIB, Bulletin n. 34; (2006).
Google Scholar
[8]
F. Lollini, M. Carsana, M. Gastaldi, E. Redaelli, L. Bertolini, Durability design of reinforced concrete structures, Proc. of the Institution of Civil Engineers, Construction Materials 164 (2011), Issue CM6, 273–282.
DOI: 10.1680/coma.1000040
Google Scholar
[9]
R.M. Ferreira, Implication on RC structure performance of model parameter sensitivity: effect of chloride, J Civ Eng Manag (2012), 561–6.
Google Scholar
[10]
M. Gastaldi, F. Lollini, L. Bertolini, Performance-based durability design of reinforced concrete structures with stainless steel bars, Metallurgia Italiana, 106 (7-8), (2014), 17-21.
Google Scholar
[11]
F. Lollini, M. Carsana, M. Gastaldi, E. Redaelli, L. Bertolini, The challenge of the performance-based approach for the design of reinforced concrete structures in chloride bearing environment, Construction and Building Materials 79 (2015).
DOI: 10.1016/j.conbuildmat.2014.12.044
Google Scholar
[12]
T. Cheldi, P. Cavassi, L. Lazzari, L. Pezzotta, Use of decision tree analysis and Montecarlo simulation for downhole material selection, Proc. Of Corrosion/97 Conference, Nace International, Houston, TX, Paper 97018 (1997).
Google Scholar
[13]
A. Brenna, F. Bolzoni, S. Beretta, M. Ormellese, Long-term chloride-induced corrosion monitoring of reinforced concrete coated with commercial polymer-modified mortar and polymeric coatings, Constr. Build. Mater. 48 (2013) 734–744.
DOI: 10.1016/j.conbuildmat.2013.07.099
Google Scholar
[14]
M.V. Diamanti, A. Brenna, F. Bolzoni, M. Berra, T. Pastore, M. Ormellese, Effect of polymer modified cementitious coatings on water and chloride permeability in concrete, Constr. Build. Mater. 49 (2013) 720–728.
DOI: 10.1016/j.conbuildmat.2013.08.050
Google Scholar
[15]
F. Bolzoni, L. Coppola, S. Goidanich, L. Lazzari, M. Ormellese, M. Pedeferri, Corrosion inhibitors in reinforced concrete structures Part 1: Preventative technique, Corrosion Engineering Science and Technology, 39 (2004), 219-228.
DOI: 10.1179/147842204x2871
Google Scholar
[16]
M. Ormellese, M. Berra, F. Bolzoni, T. Pastore, Corrosion inhibitors for chlorides induced corrosion in reinforced concrete structures, Cem Concr Res 36 (2006), 536–47.
DOI: 10.1016/j.cemconres.2005.11.007
Google Scholar
[17]
M. Ormellese, F. Bolzoni, L. Lazzari, P. Pedeferri, Effect of corrosion inhibitors on the initiation of chloride-induced corrosion on reinforced concrete structures, Mater Corros, 59 (2), (2008), 98–106.
DOI: 10.1002/maco.200804155
Google Scholar
[18]
D. M. Frangopol, M. Liu, Maintenance and management of civil infrastructure based on condition, safety, optimization, and life-cycle cost, Structure and Infrastructure Engineering, 3: 1 (2007), 29-41.
DOI: 10.1080/15732470500253164
Google Scholar
[19]
M.M.S. Cheung, K.K.L. So, X. Zhang, Life cycle cost management of concrete structures relative to chloride-induced reinforcement corrosion, Structure and Infrastructure Engineering, 8: 12 (2012), 1136-1150.
DOI: 10.1080/15732479.2010.507474
Google Scholar
[20]
J.A. Mullard, M.G. Stewart, Life-Cycle Cost Assessment of Maintenance Strategies for RC Structures in Chloride Environments, J. Bridge Eng., 17(2): (2012), 353-362.
DOI: 10.1061/(asce)be.1943-5592.0000248
Google Scholar
[21]
H. Jung, H. M. Park, J.H. Kim, G. Kim, J.S. Kong, Development of a Probabilistic Life-cycle Cost Model for Marine Structures Exposed to Chloride Attack based on Bayesian Approach using Monitoring Data, KSCE Journal of Civil Engineering (2013).
DOI: 10.1007/s12205-013-0350-9
Google Scholar
[22]
L. Saad, A. Aissani, A. Chateauneuf, W. Raphael, Reliability-based optimization of direct and indirect LCC of RC bridge elements under coupled fatigue-corrosion deterioration processes, Engineering Failure Analysis 59 (2016) 570–587.
DOI: 10.1016/j.engfailanal.2015.11.006
Google Scholar