Incorporation of a Fracture Criterion in Ideal Flow Design

Article Preview

Abstract:

The theory of sheet and bulk ideal plastic flows is used for the preliminary design of metal forming processes. The present paper develops an approach to incorporate the Cockroft and Latham ductile fracture criterion in this design method for stationary bulk flows. In particular, it is demonstrated that the initiation of ductile fracture can be predicted without having the ideal flow solution for stress and strain in the plastic zone (it is only necessary to know that the solution exists). Using the approach proposed the initiation of ductile fracture in axisymmetric drawing is predicted.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

143-146

Citation:

Online since:

September 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Chung and O. Richmond: ASME J. Appl. Mech. Vol. 61 (1994), p.176.

Google Scholar

[2] Hill R.: J. Mech. Phys. Solids Vol. 15 (1967), p.223.

Google Scholar

[3] O. Richmond and S. Alexandrov: Acta Mech. Vol. 158 (2002), p.33.

Google Scholar

[4] H.F. Weinberger: J. Mech. Phys. Solids. Vol. 45 (1997), p.1275.

Google Scholar

[5] K. Chung and S. Alexandrov: Appl. Mech. Rev. Vol. 60 (2007), p.316.

Google Scholar

[6] W.F. Hosford and R.M. Caddell: Metal Forming: Mechanics and Metallurgy (Prentice Hall, Englewood Cliffs 1993).

Google Scholar

[7] A.G. Atkins: J. Mater. Process. Technol. Vol. 56 (1996), p.609.

Google Scholar

[8] A. Shabara, A.A. El-Domiaty and M.A. Kandil: J. Mater. Eng. Perform. Vol. 5 (1996), p.478.

Google Scholar

[9] R. Hambli and M. Reszka: Int. J. Mech. Sci. Vol. 44 (2002), p.1349.

Google Scholar

[10] M.D. Cockroft and D.J. Latham: J. Inst. Metals. Vol. 96 (1968), p.33.

Google Scholar

[11] O. Richmond and S. Alexandrov: Comp. Ren. l'Acad. Sci. Series IIb. Vol. 328 (2000), p.835.

Google Scholar

[12] R. Hill: The Mathematical Theory of Plasticity (Clarendon Press, Oxford 1950).

Google Scholar

[13] O. Richmond and H.L. Morrison: J. Mech. Phys. Solids. Vol. 15 (1967), p.195.

Google Scholar