Experimental Determination of the Influence of an Air Entraining Additive on the Resistance of Concrete to Chemical Defrosting Agents

Article Preview

Abstract:

The paper describes the results of an experiment performed as part of the GAČR 13-18870S project dealing with the durability characteristics of the surface layer of hardened concrete. The paper aims to evaluate the experimental determination of the influence of an air entraining additive on the resistance of cement concrete to water and defrosting chemicals. For the purposes of the experiment 4 mixtures were prepared which differed in the amount of air entraining additive and the amount of cement. The test results were evaluated using statistical analysis of experiment.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

165-170

Citation:

Online since:

September 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Piwakowski, M. Kaczmarek, P. Safinowski; Evaluation of concrete cover by surface wave technique: Identification procedure. In: . b. r., pp.276-279.

DOI: 10.1063/1.3703188

Google Scholar

[2] Z. Liu, W. Hansen; Freezing characteristics of air-entrained concrete in the presence of deicing salt. Cement and Concrete Research. 2015, 74: 10-18.

DOI: 10.1016/j.cemconres.2015.03.015

Google Scholar

[3] J.J. Valenza, G.W. Scherer; A review of salt scaling: I. Phenomenology. Cement and Concrete Research. 2007, 37(7): 1007-1021.

DOI: 10.1016/j.cemconres.2007.03.005

Google Scholar

[4] J.J. Valenza, G.W. Scherer; Mechanism for salt scaling of a cementitious surface. Materials and Structures. 2007, 40(3): 259-268.

DOI: 10.1617/s11527-006-9104-1

Google Scholar

[5] Freeze-thaw and de-icing resistance of concrete. Essen: Lund Institute of Technology, (1992).

Google Scholar

[6] H. -S. Shang, T. -H. Yi; Freeze-Thaw Durability of Air-Entrained Concrete. The Scientific World Journal. 2013, 2013: 1-6.

DOI: 10.1155/2013/650791

Google Scholar

[7] V. Penttala; Surface and internal deterioration of concrete due to saline and non-saline freeze–thaw loads. Cement and Concrete Research. 2006, 36(5): 921-928.

DOI: 10.1016/j.cemconres.2005.10.007

Google Scholar

[8] Z. Sun, G.W. Scherer; Effect of air voids on salt scaling and internal freezing. Cement and Concrete Research. 2010, 40(2): 260-270.

DOI: 10.1016/j.cemconres.2009.09.027

Google Scholar

[9] G. Wardeh, E. Ghorbel; Prediction of fracture parameters and strain-softening behavior of concrete: effect of frost action. Materials and Structures. 2015, 48(1-2): 123-138.

DOI: 10.1617/s11527-013-0172-8

Google Scholar

[10] P. -C. Aïtcin; High-performance concrete. New York: E., 1998, 591 p. Modern concrete technology series, 5. ISBN 04-191-9270-0.

Google Scholar

[11] CEN/TS 12390-9. Testing hardened concrete – Part: 9: Freeze-thaw resistance – Scaling. CEN, (2006).

Google Scholar

[12] ČSN 73 1326. Stanovení odolnosti povrchu cementového betonu proti působení vody a chemických rozmrazovacích látek. ÚNMZ, (1985).

Google Scholar

[13] ČSN 73 1380. Zkoušení odolnosti betonu proti zmrazování a rozmrazování – Porušení vnitřní struktury. ČNI, (2007).

Google Scholar

[14] ČSN 73 1322. Stanovení mrazuvzdornosti betonu. ÚNM, (1968).

Google Scholar

[15] EN 206. Concrete – Specification, performance, production and conformity. CEN, (2013).

Google Scholar

[16] EN 12350-1. Testing fresh concrete – Part 1: Sampling. CEN, (2009).

Google Scholar

[17] EN 12390-1. Testing hardened concrete – Part 1: Shape, dimensions and other requirements for specimens and moulds. CEN, (2012).

DOI: 10.3403/30254400

Google Scholar

[18] EN 12390-2. Testing hardened concrete – Part 2: Making and curing specimens for strength tests. CEN, (2009).

Google Scholar

[19] EN 12390-3. Testing hardened concrete – Part 3: Compressive strength of test specimens. CEN, (2009).

Google Scholar