Design of Methodology for Non-Destructive Testing of Steel-Reinforced-Fiber-Concrete

Article Preview

Abstract:

Measuring instruments used for non-destructive testing of structures thanks to advances in electronics and electrical engineering are still more frequently applied. Among the building materials with which the ability to perform quality control using non-destructive testing methods would be most welcome is indisputably steel reinforced fibre concrete (SFRC). The paper deals with the design of new methods and methodologies that enable determination of the concentration and orientation of steel fibres in steel fibre reinforced concrete. Especially the distribution of steel fibres in concrete is the quintessential aspect of this construction material. Initial results of experiments have demonstrated the applicability of the proposed methods and methodologies and the objective of the article is to introduce it to the scientific community.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

179-185

Citation:

Online since:

September 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Li Z., Advanced Concrete Technology, (2011), 506 p, doi: 10. 1002/9780470950067.

Google Scholar

[2] Vodička J., Veselý V. Krátký J., Specifics of fiber concrete technology, Beton TSK, 10 (2010) 2, ISSN 12133116.

Google Scholar

[3] Vikrant S. Vairagade, Kavita S. Kene, Introduction to steel fiber reinforced concrete on engineering performance of concrete, International journal of scientific & technology research, 1 (2012) 4, ISSN 2277-8616.

Google Scholar

[4] Lataste J. F., Behloul M., Breysse D., Characterisation of fibres distribution in a steel fibre reinforced concrete with electrical resistivity measurements, NDT & E International, 41 (2008) 8, 638-647, doi: 10. 1016/j. ndteint. 2008. 03. 008.

DOI: 10.1016/j.ndteint.2008.03.008

Google Scholar

[5] Stähli P., G. M. van Mier J., Manufacturing, fibre anisotropy and fracture of hybrid fibre concrete, Engineering Fracture Mechanics, 74 (2007) 1-2, 223-242, doi: 10. 1016/j. engfracmech. 2006. 01. 028.

DOI: 10.1016/j.engfracmech.2006.01.028

Google Scholar

[6] Martinie L., Roussel N., Simple tools for fiber orientation prediction in industrial practice, Cement and concrete research, 41 (2011) 10, 993-1000, doi: 10. 1016/j. cemconres. 2011. 05. 008.

DOI: 10.1016/j.cemconres.2011.05.008

Google Scholar

[7] Dvorkin L., Dvorkin O., Yhitkovskz V., Ribakov Y., A method for optimal design of steel fiber reinforced concrete composition, Materials and Design, 32 (2011) 6, 3254-3262, doi: 10. 1016/ j. matdes. 2011. 02. 036.

DOI: 10.1016/j.matdes.2011.02.036

Google Scholar

[8] Shah A. A., Ribakov Y., Recent trends in steel fibered high-strength concrete, Materials and Design, 32 (2011) 8-9, 4122-4151, doi: 10. 1016/j. matdes. 2011. 03. 030.

DOI: 10.1016/j.matdes.2011.03.030

Google Scholar

[9] Fiala,P., Drexler,P., Nespor,D. A resonance-based solar element: a numerical model and micro/nano technology application, Proc. SPIE 8763, Smart Sensors, Actuators, and MEMS VI, 87632A (2013); doi: 10. 1117/12. 2015111.

DOI: 10.1117/12.2015111

Google Scholar

[10] Kelly P., Electricity and magnetism. Boca Raton, Fla.: CRC Press, (2015), 404, ISBN 1482206358.

Google Scholar

[11] Fiorillo F., Measurement and characterization of magnetic materials, 1st ed. Amsterdam: Elsevier Academic Press, (2004). ISBN 9780080528922.

Google Scholar

[12] Valenzuela R., Magnetic ceramics. New York: Cambridge University Press, (1994), 312, ISBN 052136485.

Google Scholar

[13] Bowick Ch., RF circuit design. 2nd ed. London: Newnes, (2008), 243.

Google Scholar

[14] Callegaro L., Electrical impedance: principles, measurement, and applications, Boca Raton: CRC Press, (2013), 284, ISBN 1439849102.

Google Scholar