Influence of Process Parameters on the Product Integrity in Friction Stir Extrusion of Magnesium Alloys

Article Preview

Abstract:

Friction Stir Extrusion is an innovative direct-recycling technology for metal machining chips. During the process a specifically designed rotating tool is plunged into a cylindrical matrix containing the scraps to be recycled. The stirring action of the tool prompts solid bonding related phenomena allowing the back extrusion of a full dense rod. This process results to be particularly relevant because allows the reuse of the scrap without any previous treatment. Experiments have been carried out in order to investigate the influence of the process parameters on the extrudes quality and a numerical model has been developed in order to simulate the evolution of the material flow.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

39-48

Citation:

Online since:

October 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Jovane, H. Yoshikawa, L. Alting, C.R. Boër, E. Westkamper, D. Williams, M. Tseng, G. Seliger, A.M. Paci, The incoming global technological and industrial revolution towards competitive sustainable manufacturing. Cirp Annals-Manufacturing Technology, 57 2 (2008).

DOI: 10.1016/j.cirp.2008.09.010

Google Scholar

[2] J. Gronostajski, A. Matuszak, Recycling of metals by plastic deformation: an example of recycling of aluminium and its alloys chips. J. Mater. Process. Tech. 92-93 (1999) 35-41.

DOI: 10.1016/s0924-0136(99)00166-1

Google Scholar

[3] T.G. Gutowski, J.M. Allwood, C. Herrmann, S. Sahni, A global assessment of manufacturing: Economic development, energy use, carbon emissions, and the potential for energy efficiency and materials recycling, in Annual Review of Environment and Resources. 2013. pp.81-106.

DOI: 10.1146/annurev-environ-041112-110510

Google Scholar

[4] G. Hanko, H. Antrekowitsch, P. Ebner, Recycling automotive magnesium scrap. Journal of Metals, 54 2 (2002) 51-54.

DOI: 10.1007/bf02701075

Google Scholar

[5] J.B. Fogagnolo, E.M. Ruiz-Navas, M.A. Simón, M.A. Martinez, Recycling of aluminium alloy and aluminium matrix composite chips by pressing and hot extrusion. J. Mater. Process. Tech. 143-144 1 (2003) 792-795.

DOI: 10.1016/s0924-0136(03)00380-7

Google Scholar

[6] J.R. Duflou, A.E. Tekkaya, M. Haase, T. Welo, K. Vanmeensel, K. Kellens, W. Dewulf, D. Paraskevas, Environmental assessment of solid state recycling routes for aluminium alloys: Can solid state processes significantly reduce the environmental impact of aluminium recycling? Cirp Annals-Manufacturing Technology, 64 1 (2015).

DOI: 10.1016/j.cirp.2015.04.051

Google Scholar

[7] M. Hu, Z. Ji, X. Chen, Z. Zhang, Effect of chip size on mechanical property and microstructure of AZ91D magnesium alloy prepared by solid state recycling. Mater. Charact. 59 4 (2008) 385-389.

DOI: 10.1016/j.matchar.2007.02.002

Google Scholar

[8] S. Wu, Z. Ji, T. Zhang, Microstructure and mechanical properties of AZ31B magnesium alloy recycled by solid-state process from different size chips. J. Mater. Process. Tech. 209 12-13 (2009) 5319-5324.

DOI: 10.1016/j.jmatprotec.2009.04.002

Google Scholar

[9] Y. Chino, K. Sassa, A. Kamiya, M. Mabuchi, Enhanced formability at elevated temperature of a cross-rolled magnesium alloy sheet. Mat. Sci. Eng. A. 441 1-2 (2006) 349-356.

DOI: 10.1016/j.msea.2006.08.038

Google Scholar

[10] N. Canter, Friction-stir: Alternative to melting and casting metal: A new technique has been developed that minimizes degradation of metal alloys. Tribol. Lubr. Technol. 67 12 (2011) 8-9.

Google Scholar

[11] M. Kleiner, M. Geiger, A. Klaus, Manufacturing of lightweight components by metal forming. Cirp Annals-Manufacturing Technology, 52 2 (2003) 521-542.

DOI: 10.1016/s0007-8506(07)60202-9

Google Scholar

[12] M. Nakanishi, M. Mabuchi, N. Saito, M. Nakamura, K. Higashi, Tensile properties of the ZK60 magnesium alloy produced by hot extrusion of machined chip. J. Mater. Sci. Lett. 17 23 (1998) 2003-(2005).

Google Scholar

[13] L. Wen, Z. Ji, X. Li, Effect of extrusion ratio on microstructure and mechanical properties of Mg-Nd-Zn-Zr alloys prepared by a solid recycling process. Mater. Charact. 59 11 (2008) 1655-1660.

DOI: 10.1016/j.matchar.2008.03.009

Google Scholar

[14] W. Tang, A.P. Reynolds, Production of wire via friction extrusion of aluminum alloy machining chips. J. Mater. Process. Tech. 210 15 (2010) 2231-2237.

DOI: 10.1016/j.jmatprotec.2010.08.010

Google Scholar

[15] M.A. Ansari, R.A. Behnagh, M. Narvan, E.S. Naeini, M.K.B. Givi, H. Ding, Optimization of Friction Stir Extrusion (FSE) Parameters Through Taguchi Technique. Trans. Indian. Inst. Met. (2015) 1-7.

DOI: 10.1007/s12666-015-0686-6

Google Scholar

[16] R.A. Behnagh, N. Shen, M.A. Ansari, M. Narvan, M.K. Besharati Givi, H. Ding, Experimental Analysis and Microstructure Modeling of Friction Stir Extrusion of Magnesium Chips. J. Manuf. Sci. Eng. 138 4 (2015) 041008-041008.

DOI: 10.1115/1.4031281

Google Scholar

[17] G. Buffa, D. Campanella, L. Fratini, F. Micari, AZ31 magnesium alloy recycling through friction stir extrusion process. Int. J. Mater. Form. (2015).

DOI: 10.1007/s12289-015-1247-6

Google Scholar

[18] H. Zhang, X. Zhao, X. Deng, M.A. Sutton, A.P. Reynolds, S.R. McNeill, X. Ke, Investigation of material flow during friction extrusion process. Int J Mech Sci, 85 (2014) 130-141.

DOI: 10.1016/j.ijmecsci.2014.05.011

Google Scholar

[19] G. Buffa. Numerical investigation on dissimilar Friction Stir Welding of Aluminum and Magnesium sheets. in Metal Forming 15th international conference. 2014. Trans Tech Publications.

DOI: 10.4028/www.scientific.net/kem.622-623.532

Google Scholar

[20] M. Plata,J. Piwnik, Theoretical and experimental analysis of seam weld formation in hot extrusion of aluminum alloys., in 7th International Aluminum Extrusion Technology Seminar. 2000. pp.205-211.

Google Scholar