[1]
F. Jovane, H. Yoshikawa, L. Alting, C.R. Boër, E. Westkamper, D. Williams, M. Tseng, G. Seliger, A.M. Paci, The incoming global technological and industrial revolution towards competitive sustainable manufacturing. Cirp Annals-Manufacturing Technology, 57 2 (2008).
DOI: 10.1016/j.cirp.2008.09.010
Google Scholar
[2]
J. Gronostajski, A. Matuszak, Recycling of metals by plastic deformation: an example of recycling of aluminium and its alloys chips. J. Mater. Process. Tech. 92-93 (1999) 35-41.
DOI: 10.1016/s0924-0136(99)00166-1
Google Scholar
[3]
T.G. Gutowski, J.M. Allwood, C. Herrmann, S. Sahni, A global assessment of manufacturing: Economic development, energy use, carbon emissions, and the potential for energy efficiency and materials recycling, in Annual Review of Environment and Resources. 2013. pp.81-106.
DOI: 10.1146/annurev-environ-041112-110510
Google Scholar
[4]
G. Hanko, H. Antrekowitsch, P. Ebner, Recycling automotive magnesium scrap. Journal of Metals, 54 2 (2002) 51-54.
DOI: 10.1007/bf02701075
Google Scholar
[5]
J.B. Fogagnolo, E.M. Ruiz-Navas, M.A. Simón, M.A. Martinez, Recycling of aluminium alloy and aluminium matrix composite chips by pressing and hot extrusion. J. Mater. Process. Tech. 143-144 1 (2003) 792-795.
DOI: 10.1016/s0924-0136(03)00380-7
Google Scholar
[6]
J.R. Duflou, A.E. Tekkaya, M. Haase, T. Welo, K. Vanmeensel, K. Kellens, W. Dewulf, D. Paraskevas, Environmental assessment of solid state recycling routes for aluminium alloys: Can solid state processes significantly reduce the environmental impact of aluminium recycling? Cirp Annals-Manufacturing Technology, 64 1 (2015).
DOI: 10.1016/j.cirp.2015.04.051
Google Scholar
[7]
M. Hu, Z. Ji, X. Chen, Z. Zhang, Effect of chip size on mechanical property and microstructure of AZ91D magnesium alloy prepared by solid state recycling. Mater. Charact. 59 4 (2008) 385-389.
DOI: 10.1016/j.matchar.2007.02.002
Google Scholar
[8]
S. Wu, Z. Ji, T. Zhang, Microstructure and mechanical properties of AZ31B magnesium alloy recycled by solid-state process from different size chips. J. Mater. Process. Tech. 209 12-13 (2009) 5319-5324.
DOI: 10.1016/j.jmatprotec.2009.04.002
Google Scholar
[9]
Y. Chino, K. Sassa, A. Kamiya, M. Mabuchi, Enhanced formability at elevated temperature of a cross-rolled magnesium alloy sheet. Mat. Sci. Eng. A. 441 1-2 (2006) 349-356.
DOI: 10.1016/j.msea.2006.08.038
Google Scholar
[10]
N. Canter, Friction-stir: Alternative to melting and casting metal: A new technique has been developed that minimizes degradation of metal alloys. Tribol. Lubr. Technol. 67 12 (2011) 8-9.
Google Scholar
[11]
M. Kleiner, M. Geiger, A. Klaus, Manufacturing of lightweight components by metal forming. Cirp Annals-Manufacturing Technology, 52 2 (2003) 521-542.
DOI: 10.1016/s0007-8506(07)60202-9
Google Scholar
[12]
M. Nakanishi, M. Mabuchi, N. Saito, M. Nakamura, K. Higashi, Tensile properties of the ZK60 magnesium alloy produced by hot extrusion of machined chip. J. Mater. Sci. Lett. 17 23 (1998) 2003-(2005).
Google Scholar
[13]
L. Wen, Z. Ji, X. Li, Effect of extrusion ratio on microstructure and mechanical properties of Mg-Nd-Zn-Zr alloys prepared by a solid recycling process. Mater. Charact. 59 11 (2008) 1655-1660.
DOI: 10.1016/j.matchar.2008.03.009
Google Scholar
[14]
W. Tang, A.P. Reynolds, Production of wire via friction extrusion of aluminum alloy machining chips. J. Mater. Process. Tech. 210 15 (2010) 2231-2237.
DOI: 10.1016/j.jmatprotec.2010.08.010
Google Scholar
[15]
M.A. Ansari, R.A. Behnagh, M. Narvan, E.S. Naeini, M.K.B. Givi, H. Ding, Optimization of Friction Stir Extrusion (FSE) Parameters Through Taguchi Technique. Trans. Indian. Inst. Met. (2015) 1-7.
DOI: 10.1007/s12666-015-0686-6
Google Scholar
[16]
R.A. Behnagh, N. Shen, M.A. Ansari, M. Narvan, M.K. Besharati Givi, H. Ding, Experimental Analysis and Microstructure Modeling of Friction Stir Extrusion of Magnesium Chips. J. Manuf. Sci. Eng. 138 4 (2015) 041008-041008.
DOI: 10.1115/1.4031281
Google Scholar
[17]
G. Buffa, D. Campanella, L. Fratini, F. Micari, AZ31 magnesium alloy recycling through friction stir extrusion process. Int. J. Mater. Form. (2015).
DOI: 10.1007/s12289-015-1247-6
Google Scholar
[18]
H. Zhang, X. Zhao, X. Deng, M.A. Sutton, A.P. Reynolds, S.R. McNeill, X. Ke, Investigation of material flow during friction extrusion process. Int J Mech Sci, 85 (2014) 130-141.
DOI: 10.1016/j.ijmecsci.2014.05.011
Google Scholar
[19]
G. Buffa. Numerical investigation on dissimilar Friction Stir Welding of Aluminum and Magnesium sheets. in Metal Forming 15th international conference. 2014. Trans Tech Publications.
DOI: 10.4028/www.scientific.net/kem.622-623.532
Google Scholar
[20]
M. Plata,J. Piwnik, Theoretical and experimental analysis of seam weld formation in hot extrusion of aluminum alloys., in 7th International Aluminum Extrusion Technology Seminar. 2000. pp.205-211.
Google Scholar