A Comparison of Input Data Used to Represent Phase Transformations during the Quenching of a Large Nuclear Forging

Article Preview

Abstract:

The present work explores the importance of model parameters and input variables when simulating the quenching of thick sectioned nuclear forgings. The modelling approach adopted uses values of specific heat capacity, containing latent heat release, to simulate cooling curves; rather than calculating transformation kinetics based upon a mathematical model. Termed the effective specific heat (Cpeff), two different methods were used to establish values: differential scanning calorimetry (DSC) and thermos dynamic predictive software. Values were then included in finite element (FE) models to simulate the characteristic cooling at the mid-wall position in a thick section forging and were validated against production thermocouple data. The investigation found that the formation of ferrite, bainite and martensite or lower bainite were all represented by the data established using DSC and critical formation temperatures were comparable with others in the literature. Conversely, values calculated using the thermodynamic software failed to represent ferrite formation and predicted different critical transformation temperatures for bainite. The simulated cooling curve that used the software predicted Cpeff data was comparable to the thermocouple data either side of the bainite transformation, however during the transformation the effects of latent heat on cooling rate were over predicting leading to disparities. The equivalent DSC cooling curves produced a near exact match.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

555-565

Citation:

Online since:

October 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] American Society of Mechanical Engineers, 2013 ASME Boiler and Pressure Vessel Code, Section II - Materials, (2013).

Google Scholar

[2] M.G. Ricci, G. Santin, F. Cascariglia, E. Scimiterna, P. Parrabbi, A. Carpinelli, Numerical analysis applied to thermal and fluid-dynamic quenching simulation of large high quality forgings., La Metall. Ital. (2011).

Google Scholar

[3] J. Pan, Y. Li, D. Li, The application of computer simulation in the heat-treatment process of a large-scale bearing roller, J. Mater. Process. Technol. 122 (2002) 241–248.

DOI: 10.1016/s0924-0136(02)00034-1

Google Scholar

[4] C.C. Liu, X.J. Xu, Z. Liu, A FEM modeling of quenching and tempering and its application in industrial engineering, Finite Elem. Anal. Des. 39 (2003) 1053–1070.

DOI: 10.1016/s0168-874x(02)00156-7

Google Scholar

[5] K. -Y. Wang, Y. -J. Jin, M. -J. Xu, J. -S. Chen, H. Lu, Estimation of heat transfer coefficient and phase transformation latent heat by modified pattern search method, Int. Commun. Heat Mass Transf. 68 (2015) 14–19.

DOI: 10.1016/j.icheatmasstransfer.2015.08.001

Google Scholar

[6] S. Serajzadeh, Modelling of temperature history and phase transformations during cooling of steel, J. Mater. Process. Tech. 146 (2004) 311–317.

DOI: 10.1016/j.jmatprotec.2003.11.010

Google Scholar

[7] M.E. Kakhki, A. Kermanpur, M.A. Golozar, Numerical simulation of continuous cooling of a low alloy steel to predict microstructure and hardness, Model. Simul. Mater. Sci. Eng. 17 (2009) 45007.

DOI: 10.1088/0965-0393/17/4/045007

Google Scholar

[8] S. Reif-Acherman, Early and current experimental methods for determining thermal conductivities of metals, Int. J. Heat Mass Transf. 77 (2014) 542–563.

DOI: 10.1016/j.ijheatmasstransfer.2014.05.038

Google Scholar

[9] J. Clark, R. Tye, Thermophysical properties reference data for some key engineering alloys, High Temp. Press. 35 (2003) 1–14.

DOI: 10.1068/htjr087

Google Scholar

[10] P. Flenner, Carbon Steel Handbook, EPRI, Palo Alto, CA. 1014670 (2007).

Google Scholar

[11] A. Powar, P. Date, Modeling of microstructure and mechanical properties of heat treated components by using Artificial Neural Network, Mater. Sci. Eng. A. 628 (2015) 89–97.

DOI: 10.1016/j.msea.2015.01.044

Google Scholar

[12] A. Pola, M. Gelfi, G.M. La Vecchia, Simulation and validation of spray quenching applied to heavy forgings, J. Mater. Process. Tech. 213 (2013) 2247–2253.

DOI: 10.1016/j.jmatprotec.2013.06.019

Google Scholar

[13] S.S. Al-Bermani, P.S. Davies, C. Chesman, B.P. Wynne, J. Talamantes-Silva, Use of controlled heat treatment to predict mechanical properties in steel components, Ironmak. Steelmak. (2015).

DOI: 10.1179/1743281215y.0000000060

Google Scholar

[14] K.D. Haverkamp, K. Forch, K. -H. Piehl, W. Witte, Effect of heat treatment and precipitation state on toughness of heavy section Mn-Mo-Ni-steel for nuclear power plants components, Nucl. Eng. Des. 81 (1984) 207–217.

DOI: 10.1016/0029-5493(84)90008-6

Google Scholar

[15] F.G. Rammerstorfer, D.F. Fischer, W. Mitter, K.J. Bathe, M.D. Snyder, On thermo-elastic-plastic analysis of heat-treatment processes including creep and phase changes, Comput. Struct. 13 (1981) 771–779.

DOI: 10.1016/0045-7949(81)90040-7

Google Scholar

[16] K.S. Jhajj, S.R. Slezak, K.J. Daun, Inferring the specific heat of an ultra high strength steel during the heating stage of hot forming die quenching, through inverse analysis, Appl. Therm. Eng. 83 (2015) 98–107.

DOI: 10.1016/j.applthermaleng.2015.03.013

Google Scholar

[17] G.P. Krielaart, C.M. Brakman, S. Van Der Zwaag, Analysis of phase transformation in Fe-C alloys using differential scanning calorimetry, J. Mater. Sci. 31 (1996) 1501–1508.

DOI: 10.1007/bf00357859

Google Scholar

[18] H. Pous-Romero, I. Lonardelli, D. Cogswell, H.K.D.H. Bhadeshia, Austenite grain growth in a nuclear pressure vessel steel, Mater. Sci. Eng. A. 567 (2013) 72–79.

DOI: 10.1016/j.msea.2013.01.005

Google Scholar

[19] K. Suzuki, I. Kurihara, T. Sasaki, Y. Koyoma, Y. Tanaka, Application of high strength MnMoNi steel to pressure vessels for nuclear power plant, Nucl. Eng. Des. 206 (2001) 261–277.

DOI: 10.1016/s0029-5493(00)00440-4

Google Scholar

[20] J. -B. Leblond, G. Mottet, J. Devaux, J. -C. Devaux, Mathematical models of anisothermal phase transformations in steels, and predicted plastic behaviour, Mater. Sci. Technol. 1 (1985) 815–822.

DOI: 10.1179/mst.1985.1.10.815

Google Scholar

[21] F.G. Caballero, C. Capdevila, C.G.D.E. Andrés, An Attempt to Establish the Variables That Most Directly Influence the Austenite Formation Process in Steels, 43 (2003) 726–735.

DOI: 10.2355/isijinternational.43.726

Google Scholar

[22] S. Kim, S. Kang, S. Lee, S. Oh, S. -J. Kwon, O. Kim, J. Hong, Correlation of the microstructure and fracture toughness of the heat-affected zones of an SA 508 steel, Metall. Mater. Trans. A. 31 (2000) 1107–1119.

DOI: 10.1007/s11661-000-0106-2

Google Scholar

[23] Y. -R. Im, Y. Jun Oh, B. -J. Lee, J. Hwa Hong, H. -C. Lee, Effects of carbide precipitation on the strength and Charpy impact properties of low carbon Mn–Ni–Mo bainitic steels, J. Nucl. Mater. 297 (2001) 138–148.

DOI: 10.1016/s0022-3115(01)00610-9

Google Scholar

[24] S. Kim, S. Lee, Y. -R. Im, H. -C. Lee, Y. Oh, J. Hong, Effects of alloying elements on mechanical and fracture properties of base metals and simulated heat-affected zones of SA 508 steels, Metall. Mater. Trans. A. 32 (2001) 903–911.

DOI: 10.1007/s11661-001-0347-8

Google Scholar

[25] E.J. Pickering, H.K.D.H. Bhadeshia, Macrosegregation and Microstructural Evolution in a Pressure-Vessel Steel, Metall. Mater. Trans. A. 45 (2014) 2983–2997.

DOI: 10.1007/s11661-014-2253-x

Google Scholar

[26] T.S. Byun, J.H. Hong, F.M. Haggag, K. Farrell, E.H. Lee, Measurement of through-the-thickness variations of mechanical properties in SA508 Gr. 3 pressure vessel steels using ball indentation test technique, Int. J. Press. Vessel. Pip. 74 (1997).

DOI: 10.1016/s0308-0161(97)00114-2

Google Scholar

[27] E.J. Pickering, H.K.D.H. Bhadeshia, The Consequences of Macroscopic Segregation on the Transformation Behavior of a Pressure-Vessel Steel, J. Press. Vessel Technol. 136 (2014) 31403.

DOI: 10.1115/1.4026448

Google Scholar

[28] H. Pous-Romero, H.K.D.H. Bhadeshia, Continuous Cooling Transformations in Nuclear Pressure Vessel Steels, Metall. Mater. Trans. A. 45 (2014) 4897–4906.

DOI: 10.1007/s11661-014-2433-8

Google Scholar

[29] J.T. Kim, H.K. Kwon, H.S. Chang, Y.W. Park, Improvement of impact toughness of the SA 508 class 3 steel for nuclear pressure vessel through steel-making and heat-treatment practices, Nucl. Eng. Des. 174 (1997) 51–58.

DOI: 10.1016/s0029-5493(97)00068-x

Google Scholar