[1]
American Society of Mechanical Engineers, 2013 ASME Boiler and Pressure Vessel Code, Section II - Materials, (2013).
Google Scholar
[2]
M.G. Ricci, G. Santin, F. Cascariglia, E. Scimiterna, P. Parrabbi, A. Carpinelli, Numerical analysis applied to thermal and fluid-dynamic quenching simulation of large high quality forgings., La Metall. Ital. (2011).
Google Scholar
[3]
J. Pan, Y. Li, D. Li, The application of computer simulation in the heat-treatment process of a large-scale bearing roller, J. Mater. Process. Technol. 122 (2002) 241–248.
DOI: 10.1016/s0924-0136(02)00034-1
Google Scholar
[4]
C.C. Liu, X.J. Xu, Z. Liu, A FEM modeling of quenching and tempering and its application in industrial engineering, Finite Elem. Anal. Des. 39 (2003) 1053–1070.
DOI: 10.1016/s0168-874x(02)00156-7
Google Scholar
[5]
K. -Y. Wang, Y. -J. Jin, M. -J. Xu, J. -S. Chen, H. Lu, Estimation of heat transfer coefficient and phase transformation latent heat by modified pattern search method, Int. Commun. Heat Mass Transf. 68 (2015) 14–19.
DOI: 10.1016/j.icheatmasstransfer.2015.08.001
Google Scholar
[6]
S. Serajzadeh, Modelling of temperature history and phase transformations during cooling of steel, J. Mater. Process. Tech. 146 (2004) 311–317.
DOI: 10.1016/j.jmatprotec.2003.11.010
Google Scholar
[7]
M.E. Kakhki, A. Kermanpur, M.A. Golozar, Numerical simulation of continuous cooling of a low alloy steel to predict microstructure and hardness, Model. Simul. Mater. Sci. Eng. 17 (2009) 45007.
DOI: 10.1088/0965-0393/17/4/045007
Google Scholar
[8]
S. Reif-Acherman, Early and current experimental methods for determining thermal conductivities of metals, Int. J. Heat Mass Transf. 77 (2014) 542–563.
DOI: 10.1016/j.ijheatmasstransfer.2014.05.038
Google Scholar
[9]
J. Clark, R. Tye, Thermophysical properties reference data for some key engineering alloys, High Temp. Press. 35 (2003) 1–14.
DOI: 10.1068/htjr087
Google Scholar
[10]
P. Flenner, Carbon Steel Handbook, EPRI, Palo Alto, CA. 1014670 (2007).
Google Scholar
[11]
A. Powar, P. Date, Modeling of microstructure and mechanical properties of heat treated components by using Artificial Neural Network, Mater. Sci. Eng. A. 628 (2015) 89–97.
DOI: 10.1016/j.msea.2015.01.044
Google Scholar
[12]
A. Pola, M. Gelfi, G.M. La Vecchia, Simulation and validation of spray quenching applied to heavy forgings, J. Mater. Process. Tech. 213 (2013) 2247–2253.
DOI: 10.1016/j.jmatprotec.2013.06.019
Google Scholar
[13]
S.S. Al-Bermani, P.S. Davies, C. Chesman, B.P. Wynne, J. Talamantes-Silva, Use of controlled heat treatment to predict mechanical properties in steel components, Ironmak. Steelmak. (2015).
DOI: 10.1179/1743281215y.0000000060
Google Scholar
[14]
K.D. Haverkamp, K. Forch, K. -H. Piehl, W. Witte, Effect of heat treatment and precipitation state on toughness of heavy section Mn-Mo-Ni-steel for nuclear power plants components, Nucl. Eng. Des. 81 (1984) 207–217.
DOI: 10.1016/0029-5493(84)90008-6
Google Scholar
[15]
F.G. Rammerstorfer, D.F. Fischer, W. Mitter, K.J. Bathe, M.D. Snyder, On thermo-elastic-plastic analysis of heat-treatment processes including creep and phase changes, Comput. Struct. 13 (1981) 771–779.
DOI: 10.1016/0045-7949(81)90040-7
Google Scholar
[16]
K.S. Jhajj, S.R. Slezak, K.J. Daun, Inferring the specific heat of an ultra high strength steel during the heating stage of hot forming die quenching, through inverse analysis, Appl. Therm. Eng. 83 (2015) 98–107.
DOI: 10.1016/j.applthermaleng.2015.03.013
Google Scholar
[17]
G.P. Krielaart, C.M. Brakman, S. Van Der Zwaag, Analysis of phase transformation in Fe-C alloys using differential scanning calorimetry, J. Mater. Sci. 31 (1996) 1501–1508.
DOI: 10.1007/bf00357859
Google Scholar
[18]
H. Pous-Romero, I. Lonardelli, D. Cogswell, H.K.D.H. Bhadeshia, Austenite grain growth in a nuclear pressure vessel steel, Mater. Sci. Eng. A. 567 (2013) 72–79.
DOI: 10.1016/j.msea.2013.01.005
Google Scholar
[19]
K. Suzuki, I. Kurihara, T. Sasaki, Y. Koyoma, Y. Tanaka, Application of high strength MnMoNi steel to pressure vessels for nuclear power plant, Nucl. Eng. Des. 206 (2001) 261–277.
DOI: 10.1016/s0029-5493(00)00440-4
Google Scholar
[20]
J. -B. Leblond, G. Mottet, J. Devaux, J. -C. Devaux, Mathematical models of anisothermal phase transformations in steels, and predicted plastic behaviour, Mater. Sci. Technol. 1 (1985) 815–822.
DOI: 10.1179/mst.1985.1.10.815
Google Scholar
[21]
F.G. Caballero, C. Capdevila, C.G.D.E. Andrés, An Attempt to Establish the Variables That Most Directly Influence the Austenite Formation Process in Steels, 43 (2003) 726–735.
DOI: 10.2355/isijinternational.43.726
Google Scholar
[22]
S. Kim, S. Kang, S. Lee, S. Oh, S. -J. Kwon, O. Kim, J. Hong, Correlation of the microstructure and fracture toughness of the heat-affected zones of an SA 508 steel, Metall. Mater. Trans. A. 31 (2000) 1107–1119.
DOI: 10.1007/s11661-000-0106-2
Google Scholar
[23]
Y. -R. Im, Y. Jun Oh, B. -J. Lee, J. Hwa Hong, H. -C. Lee, Effects of carbide precipitation on the strength and Charpy impact properties of low carbon Mn–Ni–Mo bainitic steels, J. Nucl. Mater. 297 (2001) 138–148.
DOI: 10.1016/s0022-3115(01)00610-9
Google Scholar
[24]
S. Kim, S. Lee, Y. -R. Im, H. -C. Lee, Y. Oh, J. Hong, Effects of alloying elements on mechanical and fracture properties of base metals and simulated heat-affected zones of SA 508 steels, Metall. Mater. Trans. A. 32 (2001) 903–911.
DOI: 10.1007/s11661-001-0347-8
Google Scholar
[25]
E.J. Pickering, H.K.D.H. Bhadeshia, Macrosegregation and Microstructural Evolution in a Pressure-Vessel Steel, Metall. Mater. Trans. A. 45 (2014) 2983–2997.
DOI: 10.1007/s11661-014-2253-x
Google Scholar
[26]
T.S. Byun, J.H. Hong, F.M. Haggag, K. Farrell, E.H. Lee, Measurement of through-the-thickness variations of mechanical properties in SA508 Gr. 3 pressure vessel steels using ball indentation test technique, Int. J. Press. Vessel. Pip. 74 (1997).
DOI: 10.1016/s0308-0161(97)00114-2
Google Scholar
[27]
E.J. Pickering, H.K.D.H. Bhadeshia, The Consequences of Macroscopic Segregation on the Transformation Behavior of a Pressure-Vessel Steel, J. Press. Vessel Technol. 136 (2014) 31403.
DOI: 10.1115/1.4026448
Google Scholar
[28]
H. Pous-Romero, H.K.D.H. Bhadeshia, Continuous Cooling Transformations in Nuclear Pressure Vessel Steels, Metall. Mater. Trans. A. 45 (2014) 4897–4906.
DOI: 10.1007/s11661-014-2433-8
Google Scholar
[29]
J.T. Kim, H.K. Kwon, H.S. Chang, Y.W. Park, Improvement of impact toughness of the SA 508 class 3 steel for nuclear pressure vessel through steel-making and heat-treatment practices, Nucl. Eng. Des. 174 (1997) 51–58.
DOI: 10.1016/s0029-5493(97)00068-x
Google Scholar