[1]
F. Eberl, S. Gardiner, G. Campanile, G. Surdon, M. Venmans, P. Prangnell, Age-formable panels for commercial aircraft, Proceedings of the Institution of Mechanical Engineers, Part G: J Aerospace Eng. 222 (2008) 873-886.
DOI: 10.1243/09544100jaero290
Google Scholar
[2]
MS. Younger, KH. Eckelmeyer, Overcoming Residual Stresses and Machining Distortion in the Production of Aluminium Alloy Satellite Boxes. SANDIA REPORT, SAND 2007-6811, Sandia National Laboratories (2007).
DOI: 10.2172/922073
Google Scholar
[3]
JS. Robinson, DA. Tanner, Reducing Residual Stress in 7050 Aluminium Alloy Die Forgings by Heat Treatment. J. Eng. Mater. Tech. 130 (2008) 1-8.
DOI: 10.1115/1.2931150
Google Scholar
[4]
DA. Tanner, JS. Robinson, RL. Cudd, Cold compression residual stress reduction in aluminium alloy 7010, the Fifth European Conference on Residual Stresses, (ECRS5), 347 (1999) 235-240.
DOI: 10.4028/www.scientific.net/msf.347-349.235
Google Scholar
[5]
YB. Dong, WZ. Shao, LX. Lu, JT. Jiang, L. Zhen, Numerical simulation of residual stress in an Al-Cu alloy block during quenching and aging, J. Mater. Eng. Perform. 24 (2015) 4928–4940.
DOI: 10.1007/s11665-015-1758-9
Google Scholar
[6]
YB. Dong, WZ. Shao, JT. Jiang, BY. Zhang, L. Zhen, Minimization of Residual Stress in an Al-Cu Alloy Forged Plate by Different Heat Treatments, J. Mater. Eng. Perform. 24 (2015) 2256–2265.
DOI: 10.1007/s11665-015-1505-2
Google Scholar
[7]
T. Croucher, Uphill quenching of aluminium: rebirth of a little-known process. Int. J Heat Treating. 15 (1983) 30–34.
Google Scholar
[8]
RM. Jones, Prediction of Residual Stress and Distortion from Residual Stress in Heat Treated and Machined Aluminium Parts, Master's Theses of San José State University, 2014: pp.44-45.
DOI: 10.31979/etd.u4wy-ca5e
Google Scholar
[9]
D. Rao, D. Wang, L. Chen, C. Ni, The effectiveness evaluation of 314L stainless steel vibratory stress relief by dynamic stress. Int. J. Fatigue. 29 (2007) 192-196.
DOI: 10.1016/j.ijfatigue.2006.02.047
Google Scholar
[10]
J. Zhang, YL. Deng, W. Yang, SS. Hua, XM. Zhang, Design of the multi-stage quenching process for 7050 aluminium alloy, J. Materials and Design. 56 (2014) 334–344.
DOI: 10.1016/j.matdes.2013.09.029
Google Scholar
[11]
DA. Tanner, JS. Robinson, Modelling stress reduction techniques of cold compression and stretching in wrought aluminium alloy products, J. Finite Elements in Analysis and Design. 39 (2003) 369–386.
DOI: 10.1016/s0168-874x(02)00079-3
Google Scholar
[12]
MD. Giorgi, Residual stress evolution in cold-rolled steels, Int. J. Fatigue. 33 (2011) 507–512.
DOI: 10.1016/j.ijfatigue.2010.10.006
Google Scholar
[13]
M. Mahmoodi, M. Sedighi, DA. Tanner, Experimental study of process parameters' effect on surface residual stress magnitudes in equal channel angular rolled aluminium alloys, J. Eng. Manu, DOI: 10. 1177/0954405414522449.
DOI: 10.1177/0954405414522449
Google Scholar
[14]
M. T. Hutchings, P. J. Withers, T. M. Holden, T. Lorentzen, Introduction to the Characterization of Residual Stress by Neutron Diffraction, CRC Press, London, (2005).
DOI: 10.1201/9780203402818
Google Scholar
[15]
SS. Gary, Practical residual stress measurement methods, Pub John Wiley & Sons, 2013: 201.
Google Scholar
[16]
H. Ford, Advance mechanics of materials, Longmans press, 1963; 36: p.580.
Google Scholar
[17]
American Society for Metals, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials (Metals Handbook), 2(1990): pp.62-122.
Google Scholar