Structure and Electrical Conductivity of Polystyrene/Carbon Black Composites Prepared by Microlayer Coextrusion

Article Preview

Abstract:

Electrically conducting composites with a structure of alternating (A-B-A)n layers were prepared by a novel microlayer coextrusion, which were consisted of alternating layers of polystyrene (PS) and layers of carbon black (CB)-filled polystyrene (PSCB). The co-continuous structure with selective location of CB in PSCB layers was controllable by changing the number of multiplying elements, and decreased the percolation threshold and electrical resistivity of multilayered composites because of the double percolation effect. In addition, the multilayered composites exhibited better mechanical properties than that of the conventional blends, which were related to the layered structure and small size of CB aggregates.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

38-46

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Turner, J. S. Walter, Multipolymer systems, Science. 208 (1980) 813-818.

Google Scholar

[2] H. P. Wang, J. K. Keum, A. Hiltner, E. Baer, Confined crystallization of PEO in nanolayered films impacting structure and oxygen permeability, Macromolecules. 42 (2009) 7055-7066.

DOI: 10.1021/ma901379f

Google Scholar

[3] R. Y. F. Liu, Y. Jin, A. Hiltner, E. Baer, Probing nanoscale polymer interactions by forced-assembly, Macromol. Rapid Commun. 24(2003) 943-948.

DOI: 10.1002/marc.200300051

Google Scholar

[4] T. Christopher, S. Sarah, A. R. Jo, F. Bradley, S. Daniel, J. Co-extrusion of multilayer poly(m-xylylene adipimide) nanocomposite films for high oxygen barrier packaging applications, Membrane. Sci. 340 (2009) 45-51.

DOI: 10.1016/j.memsci.2009.05.011

Google Scholar

[5] Costa, C., Lucera, A., Conte, A., Mastromatteo, M., Speranza, B., Antonacci,A., M. Mastromatteo, Antonacci, A., Effects of passive and active modified atmosphere packaging conditions on ready-to-eat table grape, J. Food. Eng. 102(2011) 115-121.

DOI: 10.1016/j.jfoodeng.2010.08.001

Google Scholar

[6] C. D. Mueller, S. Nazarenko, T. Ebeling, T. L. Schuman, A. Hiltner, and E. Baer, Novel structures by microlayer coextrusion—talc-filled PP, PC/SAN, and HDPE/LLDPE, Polym. Eng. Sci. 37(1997) 355-362.

DOI: 10.1002/pen.11678

Google Scholar

[7] D. Chisholm and W. J. Schrenk, U.S. Patent 3, 557, 265, (1971).

Google Scholar

[8] A. Turner, W. J. Schrenk, and D. S. Chisholm, U.S. Patent 3, 759, 647, (1973).

Google Scholar

[9] R. Y. F. Liu, T. E. Bernal-Lara, A. Hiltner, E. Baer, Forced assembly of polymer nanolayers thinner than the interphase, Macromolecule, 38 (2005) 10721-10727.

DOI: 10.1021/ma051649x

Google Scholar

[10] D. Jarus, A. Hiltner, E. Baer, Microlayer coextrusion as a route to innovative blend structures, Polym. Eng. Sc. 41 (2001) 2162-2171.

DOI: 10.1002/pen.10911

Google Scholar

[12] J. Li, S. Y. Guo, Y. Q. Zhang, Y. Y. Dai, and S. l. Jiang. China Patent 200810147902. 2, (2008).

Google Scholar

[13] S. Y. Guo, M. Wang, J. Li, J. B. Shen, S. B, Xu, and Q. Du, China Patent 200620036431. 4, (2006).

Google Scholar

[14] Lee, P. C., Dooley, J., Robacki, J., Jenkins, S., Wrisley, R., Improvements in flex oxygen barrier properties of polymeric films by microlayer coextrusion, J. Plast. Film. Sheet. 30(2013)234-247.

DOI: 10.1177/8756087913506728

Google Scholar

[15] W. Gao, Y. Zheng, J. B. Shen, S.Y. Guo, Electrical properties of polypropylene-based composites controlled by multilayered distribution of conductive particles, Acs. Appl. Mater. Inter. 7(2014)1541-1549.

DOI: 10.1021/am506773c

Google Scholar

[16] J. Zhu, J. Shen, S. Guo, H. J. Sue, Confined distribution of conductive particles in polyvinylidene fluoride-based multilayered dielectrics: Toward high permittivity and breakdown strength, Carbon. 84(2015)355-364.

DOI: 10.1016/j.carbon.2014.12.031

Google Scholar

[17] J. B. Shen, M. Wang, J. Li, S.Y. Guo, Simulation of mechanical properties of multilayered propylene-ethylene copolymer/ethylene 1-octene copolymer composites by equivalent box model and its experimental verification, Eur. Polym. J. 45 (2009).

DOI: 10.1016/j.eurpolymj.2009.07.013

Google Scholar

[18] A. Rameshwar, S. Volker, L. Katrin, H. M. Goerg, A. Hiltner, E. Baer, Structure and properties of multilayered PET/PC composites, Macromol. Symp, 290(2010) 156-165.

DOI: 10.1002/masy.201050418

Google Scholar

[19] J. B. Shen, F. C. Michel, Y. Zhi, Y. Qin, G. Richard, S.Y. Guo, The development of a conductive carbon nanotube (CNT) network in CNT/polypropylene composite films during biaxial stretching, Compos. Part. A-Appl. S. 43(2012) 1448-1453.

DOI: 10.1016/j.compositesa.2012.04.003

Google Scholar

[20] J. B. Shen, F. C. Michel, G. Richard, S.Y. Guo, The development of conductive carbon nanotube network in polypropylene-based composites during simultaneous biaxial stretching, Eur. Polym. J. 48 (2012) 930-939.

DOI: 10.1016/j.eurpolymj.2012.03.005

Google Scholar

[21] M. Wang, X. J. Sun, L. Su, J. B. Shen, S.Y. Guo, The electrical conductivity of carbon nanotube/carbon black/polypropylene composites prepared through multistage stretching extrusion, Polymer. 53(2012) 1602-1610.

DOI: 10.1016/j.polymer.2012.02.003

Google Scholar

[22] S. Nazarenko, E. Baer, and A. Hiltner, Oxygen barrier properties of crystallized and talc-filled poly(ethylene terephthalate), J. Mater. Sci. 37, (1999) 847-857.

DOI: 10.1002/(sici)1099-0488(19990415)37:8<847::aid-polb10>3.0.co;2-3

Google Scholar

[23] M. Matthew, E. S. Donald, F. Lionel, A. W. Mason, S. S. James, E. Baer, A. Hiltner, Reduction of dielectric hysteresis in multilayered films via nanoconfinement, Macromolecules. 45(2012) 1954-(1962).

DOI: 10.1021/ma202267r

Google Scholar

[24] G. Mohit, Y. J. Li, D. Taneisha, E. Baer, A. Hiltner, and A. S. David, Structure and gas barrier properties of poly (propylene-graft-maleic anhydride)/phosphate glass composites prepared by microlayer coextrusion, Macromolecules. 43(2010).

DOI: 10.1021/ma100391u

Google Scholar

[25] Y. Bin, C. Xu, D. Zhu, M. Matsuo, Electrical properties of polyethylene and carbon black particle blends prepared by gelation/crystallization from solution, Carbon. 40 (2002) 195-199.

DOI: 10.1016/s0008-6223(01)00173-7

Google Scholar

[26] Y. Bin, M. Kitanaka, D. Zhu, M. Matsuo, Development of highly oriented polyethylene filled with aligned carbon nanotubes by gelation/crystallization from solutions, Macromolecules. 36 (2003) 6213-6219.

DOI: 10.1021/ma0301956

Google Scholar

[27] J. G. Simmons, Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film, J. Appl. Phys. 34 (1963) 1793-1803.

DOI: 10.1063/1.1702682

Google Scholar

[28] E. K. Sichel, J. I. Gittleman, P. Sheng, Transport properties of the composite material carbon-poly(vinyl chloride), Phys. Rev. B. 18 (1978) 5712-5716.

DOI: 10.1103/physrevb.18.5712

Google Scholar

[29] Podsiadlo, P., Kaushik, A. K., Arruda, E. M., Waas, A. M., Shim, B. S., Xu, J., Nandivada, H., Pumplin, B. G., Lahann, J., Ramamoorthy, A., Kotov, N. A., Ultrastrong and stiff layered polymer nanocomposites, Science. 318 (2007) 80-83.

DOI: 10.1126/science.1143176

Google Scholar

[30] Russo, G. M., Simon, G. P., Incarnato, L., Correlation between rheological, mechanical, and barrier properties in new copolyamide-based nanocomposite films, Macromolecules. 39(2006) 3855-3864.

DOI: 10.1021/ma052178h

Google Scholar

[31] Paul, D. R., Robeson, L. M., Polymer nanotechnology: Nanocomposites, Polymer. 49 (2008) 3187-3204.

DOI: 10.1016/j.polymer.2008.04.017

Google Scholar

[32] Bonderer, L. J., Studart, A. R., Gauckler, L. J., Bioinspired design and assembly of platelet reinforced polymer films, Science. 319 (2008) 1069-1073.

DOI: 10.1126/science.1148726

Google Scholar