Synthesis and Characterization of Silaned-Graphene Oxide-Mordenite Grafting

Article Preview

Abstract:

The grafted materials of silaned-graphene oxide-mordenite (s-GO-MOR) were synthesized by grafting graphene oxide (GO) sheets to acid-treated mordenite and followed by functionalization with silane. GO sheets were prepared according to the modified Hummers method. 3-mercaptopropyltriethoxysilane (MPTES) was used as a silane coupling agent. The products were characterized by a Fourier transform infrared spectroscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy and thermogravimetric analysis. The results confirmed the success of s-GO-MOR and showed excellent thermal stability.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

81-86

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Prapainainar, S. Kanjanapaisit, P. Kongkachuichay, S.M. Holmes, P. Prapainainar, Surface modification of mordenite in Nafion composite membrane for direct ethanol fuel cell and its characterizations: Effect of types of silane coupling agent, JECE. 4 (2016).

DOI: 10.1016/j.jece.2016.05.005

Google Scholar

[2] C. Yoonoo, C.P. Dawson, E.P.L. Roberts, S.M. Holmes, Nafion®/mordenite composite membranes for improved direct methanol fuel cell performance, J. Membrane. Sci. 369 (2011) 367-74.

DOI: 10.1016/j.memsci.2010.12.030

Google Scholar

[3] P. Prapainainar, A. Theampetch, P. Kongkachuichay, N. Laosiripojana, S.M. Holmes, C. Prapainainar, Effect of solution casting temperature on properties of nafion composite membrane with surface modified mordenite for direct methanol fuel cell, Surf. Coat. Technol. 271 (2015).

DOI: 10.1016/j.surfcoat.2015.01.021

Google Scholar

[4] Wan Y-J, Gong L-X, Tang L-C, Wu L-B, Jiang J-X, Mechanical properties of epoxy composites filled with silane-functionalized graphene oxide, Compos. Part. A. Appl. S. 64 (2014) 79-89.

DOI: 10.1016/j.compositesa.2014.04.023

Google Scholar

[5] Y. Yu, B.N. Murthy, J.G. Shapter, K.T. Constantopoulos, Voelcker NH, Ellis AV, Benzene carboxylic acid derivatized graphene oxide nanosheets on natural zeolites as effective adsorbents for cationic dye removal, J Hazard Mater. 260 (2013) 330-8.

DOI: 10.1016/j.jhazmat.2013.05.041

Google Scholar

[6] X. Li, Z. Wang, Q. Li, J. Ma, M, Zhu, Preparation, characterization, and application of mesoporous silica-grafted graphene oxide for highly selective lead adsorption, Chem. Eng. J. 273 (2015) 630-7.

DOI: 10.1016/j.cej.2015.03.104

Google Scholar

[7] H.B. Jiang, Y.L. Zhang, Y. Zhang, Y. Liu, X.Y. Fu, Y.Q. Liu, Flame treatment of graphene oxides: cost-effective production of nanoporous graphene electrode for Lithium-ion batteries, Sci Rep. 5 (2015) 17522.

DOI: 10.1038/srep17522

Google Scholar

[8] W. Zhang, J. Ma, D. Gao, Y. Zhou, C. Li, J. Zha, Preparation of amino-functionalized graphene oxide by Hoffman rearrangement and its performances on polyacrylate coating latex, Prog. Org. Coat. 94 (2016) 9-17.

DOI: 10.1016/j.porgcoat.2016.01.013

Google Scholar

[9] Y. Sanguansak, P. Srimuk, A. Krittayavathananon, S. Luanwuthi, N. Chinvipas, P. Chiochan, Permselective properties of graphene oxide and reduced graphene oxide electrodes, Carbon. 2014; 68: 662-9.

DOI: 10.1016/j.carbon.2013.11.047

Google Scholar

[10] Ostrooumov M, Cappelletti P, de'Gennaro R, Mineralogical study of zeolite from New Mexican deposits (Cuitzeo area, Michoacan, Mexico), Appl. Clay. Sci. 55 (2012) 27-35.

DOI: 10.1016/j.clay.2011.09.011

Google Scholar

[11] X. Lü, Z. Cui, W. Wei, J. Xie, L. Jiang, J. Huang, Constructing polyurethane sponge modified with silica/graphene oxide nanohybrids as a ternary sorbent. Chem. Eng. J. 284 (2016) 478-86.

DOI: 10.1016/j.cej.2015.09.002

Google Scholar

[12] Y. Ma, H. Di, Z. Yu, L. Liang, L. Lv, Y. Pan, Fabrication of silica-decorated graphene oxide nanohybrids and the properties of composite epoxy coatings research, Appl. Surf. Sci. 360 (2016) 936-45.

DOI: 10.1016/j.apsusc.2015.11.088

Google Scholar

[13] S. Chang, C. Lu, K.Y. Lin, Comparisons of kinetics, thermodynamics and regeneration of tetramethylammonium hydroxide adsorption in aqueous solution with graphene oxide, zeolite and activated carbon, Appl. Surf. Sci. 326 (2015) 187-94.

DOI: 10.1016/j.apsusc.2014.11.141

Google Scholar

[14] M.E. Uddin, N.H. Kim, T. Kuila, S.H. Lee, D. Hui, J.H. Lee, Preparation of reduced graphene oxide-NiFe2O4 nanocomposites for the electrocatalytic oxidation of hydrazine, Compos Part B. 79 (2015) 649-59.

DOI: 10.1016/j.compositesb.2015.05.029

Google Scholar

[15] W. Gao, M. Majumder, L.B. Alemany, T.N. Narayanan, M.A. Ibarra, B.K. Pradhan, Engineered graphite oxide materials for application in water purification, ACS Appl Mater Int. 3 (2011) 1821-6.

DOI: 10.1021/am200300u

Google Scholar

[16] A. Wang, L. Long, W. Zhao, Y. Song, M.G. Humphrey, Cifuentes MP, Increased optical nonlinearities of graphene nanohybrids covalently functionalized by axially-coordinated porphyrins, Carbon. 2013; 53: 327-38.

DOI: 10.1016/j.carbon.2012.11.019

Google Scholar

[17] A. Ates, C. Hardacre, The effect of various treatment conditions on natural zeolites: ion exchange, acidic, thermal and steam treatments, J Colloid Interface Sci. 372 (2012) 130-40.

DOI: 10.1016/j.jcis.2012.01.017

Google Scholar

[18] C.Y. Lee, J.H. Bae, T-Y Kim, S-H Chang, SY Kim, Using silane-functionalized graphene oxides for enhancing the interfacial bonding strength of carbon/epoxy composites, Compos Part A. 75 (2015) 11-7.

DOI: 10.1016/j.compositesa.2015.04.013

Google Scholar