Magnetic Behaviour of FeCo/Cu Core Shell Nanoparticles

Article Preview

Abstract:

In the present investigation, FeCo/Cu core shell nanoparticles were prepared by coating a Cu layer over FeCo alloy nanoparticles through displacement reaction. X-ray diffraction studies confirmed the presence of FeCo and Cu phases in the sample. The grain size and lattice strains of the core shell nanostructures were evaluated from the x-ray profiles by using single line profile analysis technique. The effect of annealing temperature on the magnetic properties of the core shell nanoparticles was studied by using a vibrating sample magnetometer. The results showed that the magnetic properties improve significantly after annealing the compacts of core shell nanoparticles under a magnetic field. Enhancement in magnetization was observed in the compacts with the increase in annealing temperature. Highest saturation magnetization value of 56 emu/g was recorded in the sample which was annealed at 600°C. It has been also found that the blocking temperature of the core shell nanoparticles increases with the increase in annealing temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-8

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.S. Sundar, S.C. Devi, Soft magnetic FeCo alloys: alloy development, processing, and properties, Int. Mater. Rev. 50 (2005) 157-192.

DOI: 10.1179/174328005x14339

Google Scholar

[2] T.P. Braga, D.F. Dias, M.F. Sousa, J.M. Soares, J.M. Sasaki, Synthesis of air stable FeCo alloy nanocrystallite by proteic sol–gel method using a rotary oven, J. Alloy. Compd. 622 (2015) 408–417.

DOI: 10.1016/j.jallcom.2014.10.074

Google Scholar

[3] A.G. Kolhatkar, I. Nekrashevich, D. Litvinov, R.C. Willson, T.R. Lee, Cubic silica-coated and amine-functionalized FeCo nanoparticles with high saturation magnetization, Chem. Mater. 25 (2013) 1092−1097.

DOI: 10.1021/cm304111z

Google Scholar

[4] G. Giannopoulos et al, Structural and magnetic properties of strongly carbon doped Fe–Co thin films, J. Magn. Magn. Mater. 393 (2015) 479–483.

Google Scholar

[5] T.L. Kline, Y.H. Xu, Y. Jing, J.P. Wang, Biocompatible high-moment FeCo-Au magnetic nanoparticles for magnetic hyperthermia treatment optimization, J. Magn. Magn. Mater. 321 (2009) 1525–1528.

DOI: 10.1016/j.jmmm.2009.02.079

Google Scholar

[6] T.A. Lafford, M.R.J. Gibbs, C. Shearwood, Magnetic, magnetostrictive and structural properties of iron-cobalt/silver multilayers, J. Magn. Magn. Mater. 132 (1994) 89–94.

DOI: 10.1016/0304-8853(94)90303-4

Google Scholar

[7] Z. Guo, L.L. Henry, E.J. Podlahaa, CoFe, Fe and Co nanoparticles displacement with Cu ions, J. Electrochem. Soc. Trans. 25 (2007) 337-345.

DOI: 10.1149/1.2753266

Google Scholar

[8] S. Behrens et al, Surface engineering of Co and FeCo nanoparticles for biomedical application, J. Phys.: Condens. Mat. 18 (2006) s2543.

Google Scholar

[9] M. Mchenry, M.A. Willard, H. Iwanbe, R.A. Sutton, Z. Turgut, A. Hsiao, D.E. Laughlin, Nanocrystalline materials for high temperature soft magnetic applications: A current prospectus, B. Mater. Sci. 22 (1999) 495-501.

DOI: 10.1007/bf02749961

Google Scholar

[10] Q. Fangyuan et al, Synthesis of Cu@FeCo core shell nanoparticles for the catalytic hydrolysis of ammonia borane, Int. J. Hydrogen. Energ. 39 (2014) 436-441.

DOI: 10.1016/j.ijhydene.2013.10.080

Google Scholar

[11] M. Chen, S. Yamamuro, D. Farrell, S.A. Majetich, Gold-coated iron nanoparticles for biomedical applications, J. Appl. Phys. 93 (2003) 7551- 7553.

DOI: 10.1063/1.1555312

Google Scholar

[12] Z. Guo, C.S.S.R. Kumar, L.L. Henry, E.E. Doomes, J. Hormes, E.J. Podlaha, Displacement synthesis of Cu shells surrounding Co nanoparticles, J. Electrochem. Soc. 152 (2005) D1-D5.

DOI: 10.1149/1.1825384

Google Scholar

[13] J. Park, J. Cheon, Synthesis of solid solution" and "core-shell, type cobalt-platinum magnetic nanoparticles via transmetalation reactions, J. Am. Chem. Soc. 123 (2001) 5743-5746.

DOI: 10.1021/ja0156340

Google Scholar

[14] M. Liu, Z. Wang, Y.C. Xu , Influence of magnetic field annealing methods on soft magnetic properties for FeCo-based nanocrystalline alloys, IEEE. T. Magn. 40 (2004) 2697-2699.

DOI: 10.1109/intmag.2015.7157151

Google Scholar

[15] T.H.D. Keijser, J.I. Langford, E.J. Mittemeijer, A.B.P. Vogels, Use of the voigt function in a single-line method for the analysis of x-ray diffraction line broadening, J. Appl. Crystallogr. 15(1982) 308-314.

DOI: 10.1107/s0021889882012035

Google Scholar

[16] S.M. Ramay et al, Influence of temperature on structural and magnetic properties of Co0⋅5Mn0⋅5Fe2O4 ferrites, B. Mater. Sci. 34 (2011) 1415–1419.

DOI: 10.1007/s12034-011-0337-4

Google Scholar