Application of Thermosensitive Poloxamer-Based Hydrogel in the Development of Transdermal Therapy Containing Herbal Medicine

Article Preview

Abstract:

Poloxamer 407 exhibits remarkable reversible sol gel transition which makes it attractive and promising in the application of transdermal therapy. This study mainly reports the skin permeation properties of model drug from poloxamer 407 based transdermal hydrogel therapy with the presence of chemical penetration enhancers. Poloxamer 407 based hydrogel was shown porous structure which faciliates the diffusional release of model drug. Compared with borneol and 1,2-propanediol, azone was the most effective enhancer for gallic acid skin permeation, and 3% of azone presented the optimal enhancement effect. This study also demonstrated that the selection of enhancers is of great importance for the skin permeation of model drug.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

57-61

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Alexandridis, T.A. Hatton, Poly (ethylene oxide) poly (propylene oxide)poly (ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: thermodynamics, structure, dynamics, and modeling, Colloid Surface A, 96 (1995).

DOI: 10.1016/0927-7757(94)03028-x

Google Scholar

[2] X.Y. Xiong, K.C. Tam, L.H. Gan, Polymeric Nanostructures for Drug Delivery Applications Based on Pluronic Copolymer Systems, J Nanosci Nanotechnol, 6 (2006) 2638-2650.

DOI: 10.1166/jnn.2006.449

Google Scholar

[3] L. Klouda, A.G. Mikos, Thermoresponsive hydrogels in biomedical applications, Eur J Pharm Biopharm, 68 (2008) 34-45.

Google Scholar

[4] B. Jeong, S.W. Kim, Y.H. Bae, Thermosensitive sol–gel reversible hydrogels, Adv Drug Deliver Rev, 54 (2002) 37-51.

DOI: 10.1016/s0169-409x(01)00242-3

Google Scholar

[5] D.A. Chiappetta, A. Sosnik, Poly(ethylene oxide)–poly(propylene oxide) block copolymer micelles as drug delivery agents: Improved hydrosolubility, stability and bioavailability of drugs, Eur J Pharm Biopharm, 66 (2007) 303-317.

DOI: 10.1016/j.ejpb.2007.03.022

Google Scholar

[6] S.D. Desai, J. Blanchard, In vitro evaluation of pluronic F127‐based controlled‐release ocular delivery systems for pilocarpine, J Pharm Sci, 87 (1998) 226-230.

DOI: 10.1021/js970090e

Google Scholar

[7] G. Bonacucina, M. Cespi, G. Mencarelli, G. Giorgioni, G.F. Palmieri, Thermosensitive Self-Assembling Block Copolymers as Drug Delivery Systems, Polymers, 3 (2011) 779-811.

DOI: 10.3390/polym3020779

Google Scholar

[8] C.C. Chen, C.L. Fang, S.A. Al-Suwayeh, Y.L. Leu, J.Y. Fang, Transdermal delivery of selegiline from alginate-Pluronic composite thermogels, Int J Pharm, 415 (2011) 119-128.

DOI: 10.1016/j.ijpharm.2011.05.060

Google Scholar

[9] K. Moebus, J. Siepmann, R. Bodmeier, Alginate-poloxamer microparticles for controlled drug delivery to mucosal tissue, Eur J Pharm Biopharm, 72 (2009) 42-53.

DOI: 10.1016/j.ejpb.2008.12.004

Google Scholar

[10] V. Nair, Poloxamer gel as vehicle for transdermal iontophoretic delivery of arginine vasopressin: evaluation of in vivo performance in rats, Pharmacol Res, 47 (2003) 555-562.

DOI: 10.1016/s1043-6618(03)00043-4

Google Scholar

[11] E.A. Yapar, Ö. Ýnal, Poly (ethylene oxide)–poly (propylene oxide)-based copolymers for transdermal drug delivery: An overview, Trop J Pharm Res, 11 (2013) 855-866.

DOI: 10.4314/tjpr.v11i5.20

Google Scholar

[12] W. Wang, E. Wat, P.C.L. Hui, B. Chan, F.S.F. Ng, C.W. Kan, X. Wang, H. Hu, E.C.W. Wong, C.B.S. Lau, P.C. Leung, Dual-functional transdermal drug delivery system with controllable drug loading based on thermosensitive poloxamer hydrogel for atopic dermatitis treatment, Sci Rep, 6 (2016).

DOI: 10.1038/srep24112

Google Scholar

[13] Oecd, OECD Guidelines for the Testing of Chemicals, Organization for Economic, (1994).

Google Scholar

[14] B.C. Chan, L.F. Li, S.Q. Hu, E. Wat, E.C. Wong, V.X. Zhang, C.B. Lau, C.K. Wong, K.L. Hon, P.C. Hui, P.C. Leung, Gallic Acid Is the Major Active Component of Cortex Moutan in Inhibiting Immune Maturation of Human Monocyte-Derived Dendritic Cells, Molecules, 20 (2015).

DOI: 10.3390/molecules200916388

Google Scholar

[15] K.Y. Liu, S. Hu, B.C. Chan, E.C. Wat, C.B. Lau, K.L. Hon, K.P. Fung, P.C. Leung, P.C. Hui, C.W. Lam, C.K. Wong, Anti-inflammatory and anti-allergic activities of Pentaherb formula, Moutan Cortex (Danpi) and gallic acid, Molecules, 18 (2013).

DOI: 10.3390/molecules18032483

Google Scholar

[16] S.L. Borgia, P. Schlupp, W. Mehnert, M. Schäfer-Korting, In vitro skin absorption and drug release–a comparison of six commercial prednicarbate preparations for topical use, Eur J Pharm Biopharm, 68 (2008) 380-389.

DOI: 10.1016/j.ejpb.2007.05.003

Google Scholar

[17] L. Shargel, S. Wu-Pong, A.B. Yu, Physiologic Drug Distribution and Protein Binding in: Applied biopharmaceutics & pharmacokinetics, McGraw-Hill, 2012, p.211.

Google Scholar

[18] Y. Li, J. Rodrigues, H. Tomas, Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications, Chem Soc Rev, 41 (2012) 2193-2221.

DOI: 10.1039/c1cs15203c

Google Scholar

[19] M.R. Prausnitz, R. Langer, Transdermal drug delivery, Nat Biotechnol, 26 (2008) 1261-1268.

DOI: 10.1038/nbt.1504

Google Scholar