Hot Deformation Characterization of Mg-Sm-Zn-Zr Alloy Using Artificial Neural Network and 3D Processing Map

Article Preview

Abstract:

The true stress-strain data from isothermal hot compression tests on Gleeble-1500D thermo mechanical simulator, in a wide range of temperatures (350-450°C) and strain rates (0.001-1s-1), was employed to establish the PSO-BP network prediction model and 3D processing map of Mg-Sm-Zn-Zr alloy. It was found that the PSO-BP model could be efficient and accurate in predicting flow stress, most of relative errors were in the range of -4% to 6%, and the average relative error was found to be 1.52%. Then considering the effect of strain, the 3D processing map was established to characterize the hot workability of the alloy. The 3D processing map exhibited the maximum efficiency domain and the instability domain, which could be used to determine the optimal deformation conditions. The optimum processing parameters of Mg-Sm-Zn-Zr alloy were deformation temperatures of 400-450°C and strain rates of 0.003-0.1s-1.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

252-257

Citation:

Online since:

December 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. L. Mordike, T. Ebert, Magnesium properties-applications-potential, Mater. Sci. Eng. A 302(1) (2001) 37-45.

Google Scholar

[2] H. C. Xiao, S. N. Jiang, B. Tang, W. H. Hao, Y. H. Gao, Z. Y. Chen, C. M. Liu, Hot deformation and dynamic recrystallization behaviors of Mg-Gd-Y-Zr alloy, Mater. Sci. Eng. A 628 (2015) 311-318.

DOI: 10.1016/j.msea.2015.01.041

Google Scholar

[3] L. B. Tong, X. Li, D. P. Zhang, L. R. Cheng, H. J. Zhang, Dynamic recrystallization and texture evolution of Mg-Y-Zn alloy during hot extrusion process, Mater. Charact. 92 (2014) 77-83.

DOI: 10.1016/j.matchar.2014.03.006

Google Scholar

[4] R. K. Sabat, R. K. Mishra, A. K. Sachdev, S. Suwas, The deciding role of texture on ductility in a Ce containing Mg alloy, Mater. Lett. 153 (2015) 158-161.

DOI: 10.1016/j.matlet.2015.03.036

Google Scholar

[5] J. Zheng, Q. D. Wang, Z. L. Jin, T. Peng, Effect of Sm on the microstructure, mechanical properties and creep behavior of Mg-0. 5Zn-0. 4Zr based alloys, Mater. Sci. Eng. A 527(7-8) (2010) 1677-1685.

DOI: 10.1016/j.msea.2009.10.067

Google Scholar

[6] Y. C. Lin, X. M. Chen, A critical review of experimental results and constitutive descriptions for metals and alloys in hot working, Mater. Des. 32(4) (2011) 1733-1759.

DOI: 10.1016/j.matdes.2010.11.048

Google Scholar

[7] N. Haghdadi, A. Zarei-Hanzaki, A. R. Khalesian, H. R. Abedi, Artificial neural network modeling to predict the hot deformation behavior of an A356 aluminum alloy, Mater. Des. 49(2013) 386-391.

DOI: 10.1016/j.matdes.2012.12.082

Google Scholar

[8] J. W. Zhao, H. Ding, W. J. Zhao, M. L. Huang, D. B. Wei, Z. Y. Jiang, Modelling of the hot deformation behaviour of a titanium alloy using constitutive equations and artificial neural network, Comp. Mater. Sci. 92 (2014) 47-56.

DOI: 10.1016/j.commatsci.2014.05.040

Google Scholar

[9] Y. Prasad, K. Rao, S. Sasidhar, Hot working guide: a compendium of processing maps, ASM international, (2015).

Google Scholar

[10] F. Chen, J. Liu, H. G. Ou, B. Lu, Z. S. Cui, H. Long, Flow characteristics and intrinsic workability of IN718 superalloy, Mater. Sci. Eng. A 642 (2015) 279-287.

DOI: 10.1016/j.msea.2015.06.093

Google Scholar

[11] A. Mohamadizadeh, A. Zarei-Hanzaki, H. R. Abedi, S. Mehtonen, D. Porter, Hot deformation characterization of duplex low-density steel through 3D processing map development, Mater. Charact. 107 (2015) 293-301.

DOI: 10.1016/j.matchar.2015.07.028

Google Scholar