Effect of Niobium Doping on the Properties of Yttria-Stabilised Zirconia for Solid Electrolyte in Solid Oxide Fuel Cell

Article Preview

Abstract:

8 mol % Yttria Stabillize Zirconia (8YSZ) generally used as solid electrolyte in solid oxide fuel cell (SOFC). In this study, niobium (0, 1, 2, 3 mol%) doped 8YSZ ceramics were prepared by the conventional solid state process. The mixtures of powders were calcined, compacted into cylinderical pellets, and sintered at 1500°C for 2 hours in air atmosphere. All samples were evaluated for phase stability, microstructure and electrical conductivity. Tetragonal phase was detected as the major phase for all studied samples. With increasing in Nb addition, tetragonal and cubic phase started to transform to monoclinic phase. The introduction of Nb2O5 (more than 0.5 mol %) was not only useful to enhance the densification, but also helpful to enhanced the ionic conductivity of 8YSZ samples. SEM micrographs of niobium-doped zirconia powders indicated the coalesce of fine particles with sizes varying from 10 μm to 1 μm, in response to increasing in Nb content.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

673-678

Citation:

Online since:

December 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Courtin, P. Boy, T. Piquero, J. Vulliet, N. Poirot, C. Laberty-Robert, A composite sol–gel process to prepare a YSZ electrolyte for Solid Oxide Fuel Cells, J. Pow. Source. 206 (2012) 77-83.

DOI: 10.1016/j.jpowsour.2012.01.109

Google Scholar

[2] S. M. Haile, Fuel cell materials and components☆☆, Acta Mater. 51 (2003) 5981-6000.

Google Scholar

[3] N. Q. Minh, Ceramic Fuel Cells, J. Am. Ceram. Soc. 76 (1993) 563-588.

Google Scholar

[4] E. J. De Guire, Solid Oxide Fuel Cells, Review Article, (2003).

Google Scholar

[5] J. Judes, V. Kamaraj, Preparation and characterization of yttria stabilized zirconia minispheres by the sol-gel drop generation method, Mater. Sci. Poland, 27 (2009) 407-415.

DOI: 10.1007/s10971-008-1853-6

Google Scholar

[6] R. C. Garvie, Stabilization of the tetragonal structure in zirconia microcrystals, J. Phys. Chem. 82 (1978) 218-224.

DOI: 10.1021/j100491a016

Google Scholar

[7] R. C. Garvie, R. H. Hannink, R. T. Pascoe, Ceramic steel?, Nat. 258 (1975) 703-704.

DOI: 10.1038/258703a0

Google Scholar

[8] H. Tsubakino, M. Hamamoto, R. Nozato, Tetragonal-to-monoclinic phase transformation during thermal cycling and isothermal ageing in yttria-partially stabilized zirconia, J. Mater. Sci. 26 (1991) 5521-5526.

DOI: 10.1007/bf02403953

Google Scholar

[9] S. Nazarpour, C. López-Gándara, C. Zamani, J. M. Fernández-Sanjuán, F. M. Ramos, A. Cirera, Phase transformation studies on YSZ doped with alumina. Part 2: Yttria segregation, J. Alloy. Comp. 505 (2010) 534-541.

DOI: 10.1016/j.jallcom.2010.05.137

Google Scholar

[10] R. C. Pullar, M. D. Taylor, A. K. Bhattacharya, The manufacture of partially-stabilised and fully-stabilised zirconia fibres blow spun from an alkoxide derived aqueous sol–gel precursor, J. European Cer. Soc. 21 (2001) 19-27.

DOI: 10.1016/s0955-2219(00)00178-3

Google Scholar

[11] X. Guo, Z. Wang, Effect of niobia on the defect structure of yttria-stabilized zirconia, J. European Ceram. Soc. 18 (1998) 237-240.

DOI: 10.1016/s0955-2219(97)00123-4

Google Scholar

[12] S. Raghavan, H. Wang, W. Porter, R. Dinwiddie, M. Mayo, Thermal properties of zirconia co-doped with trivalent and pentavalent oxides, Acta Mater. 49 (2001) 169-179.

DOI: 10.1016/s1359-6454(00)00295-0

Google Scholar

[13] H. Guo, X. Bi, S. Gong, H. Xu, Microstructure investigation on gradient porous thermal barrier coating prepared by EB-PVD, Scripta Mater. 44 (2001) 683-687.

DOI: 10.1016/s1359-6462(00)00646-1

Google Scholar

[14] S. Raghavan, H. Wang, R. B. Dinwiddie, W. D. Porter, M. J. Mayo, The effect of grain size, porosity and yttria content on the thermal conductivity of nanocrystalline zirconia, Scripta Mater. 39 (1998) 1119-1125.

DOI: 10.1016/s1359-6462(98)00290-5

Google Scholar

[15] D. J. Kim, T. Y. Tien, Phase stability and physical properties of cubic and tetragonal ZrO2 in the system ZrO2–Y2O3–Ta2O5, J. Am. Ceram. Soc. 74 (1991) 3061-3065.

DOI: 10.1111/j.1151-2916.1991.tb04302.x

Google Scholar

[16] M. M. Bucko, Ionic conductivity of CaO-Y2O3-ZrO2 materials with constant oxygen vacancy concentration, J. European Ceram. Soc. 24 (2004) 1305-1308.

DOI: 10.1016/s0955-2219(03)00502-8

Google Scholar

[17] S. M. Vidyavathy, V. Kamaraj, Microwave sintering of niobium co-doped yttria stabilized zirconia, Mod. Appl. Sci. 3 (2009) 102-105.

DOI: 10.5539/mas.v3n6p102

Google Scholar

[18] X. Guo, Effect of Nb 2 O 5 on the space-charge conduction of Y 2 O 3-stabilized ZrO 2, Sol. State Ion. 99 (1997) 137-142.

Google Scholar

[19] H. Scott, Phase relationships in the zirconia-yttria system, J. Mater. Sci. 10 (1975) 1527-1535.

Google Scholar

[20] J. R. Macdonald, Impedance spectroscopy: emphasizing solid materials and systems, Appl. Opt. 28 (1989) 1083.

Google Scholar

[21] X. Guo, Physical origin of the intrinsic grain-boundary resistivity of stabilized-zirconia: role of the space-charge layers, Sol. State Ion. 81 (1995) 235-242.

DOI: 10.1016/0167-2738(95)00180-e

Google Scholar