[1]
E. Courtin, P. Boy, T. Piquero, J. Vulliet, N. Poirot, C. Laberty-Robert, A composite sol–gel process to prepare a YSZ electrolyte for Solid Oxide Fuel Cells, J. Pow. Source. 206 (2012) 77-83.
DOI: 10.1016/j.jpowsour.2012.01.109
Google Scholar
[2]
S. M. Haile, Fuel cell materials and components☆☆, Acta Mater. 51 (2003) 5981-6000.
Google Scholar
[3]
N. Q. Minh, Ceramic Fuel Cells, J. Am. Ceram. Soc. 76 (1993) 563-588.
Google Scholar
[4]
E. J. De Guire, Solid Oxide Fuel Cells, Review Article, (2003).
Google Scholar
[5]
J. Judes, V. Kamaraj, Preparation and characterization of yttria stabilized zirconia minispheres by the sol-gel drop generation method, Mater. Sci. Poland, 27 (2009) 407-415.
DOI: 10.1007/s10971-008-1853-6
Google Scholar
[6]
R. C. Garvie, Stabilization of the tetragonal structure in zirconia microcrystals, J. Phys. Chem. 82 (1978) 218-224.
DOI: 10.1021/j100491a016
Google Scholar
[7]
R. C. Garvie, R. H. Hannink, R. T. Pascoe, Ceramic steel?, Nat. 258 (1975) 703-704.
DOI: 10.1038/258703a0
Google Scholar
[8]
H. Tsubakino, M. Hamamoto, R. Nozato, Tetragonal-to-monoclinic phase transformation during thermal cycling and isothermal ageing in yttria-partially stabilized zirconia, J. Mater. Sci. 26 (1991) 5521-5526.
DOI: 10.1007/bf02403953
Google Scholar
[9]
S. Nazarpour, C. López-Gándara, C. Zamani, J. M. Fernández-Sanjuán, F. M. Ramos, A. Cirera, Phase transformation studies on YSZ doped with alumina. Part 2: Yttria segregation, J. Alloy. Comp. 505 (2010) 534-541.
DOI: 10.1016/j.jallcom.2010.05.137
Google Scholar
[10]
R. C. Pullar, M. D. Taylor, A. K. Bhattacharya, The manufacture of partially-stabilised and fully-stabilised zirconia fibres blow spun from an alkoxide derived aqueous sol–gel precursor, J. European Cer. Soc. 21 (2001) 19-27.
DOI: 10.1016/s0955-2219(00)00178-3
Google Scholar
[11]
X. Guo, Z. Wang, Effect of niobia on the defect structure of yttria-stabilized zirconia, J. European Ceram. Soc. 18 (1998) 237-240.
DOI: 10.1016/s0955-2219(97)00123-4
Google Scholar
[12]
S. Raghavan, H. Wang, W. Porter, R. Dinwiddie, M. Mayo, Thermal properties of zirconia co-doped with trivalent and pentavalent oxides, Acta Mater. 49 (2001) 169-179.
DOI: 10.1016/s1359-6454(00)00295-0
Google Scholar
[13]
H. Guo, X. Bi, S. Gong, H. Xu, Microstructure investigation on gradient porous thermal barrier coating prepared by EB-PVD, Scripta Mater. 44 (2001) 683-687.
DOI: 10.1016/s1359-6462(00)00646-1
Google Scholar
[14]
S. Raghavan, H. Wang, R. B. Dinwiddie, W. D. Porter, M. J. Mayo, The effect of grain size, porosity and yttria content on the thermal conductivity of nanocrystalline zirconia, Scripta Mater. 39 (1998) 1119-1125.
DOI: 10.1016/s1359-6462(98)00290-5
Google Scholar
[15]
D. J. Kim, T. Y. Tien, Phase stability and physical properties of cubic and tetragonal ZrO2 in the system ZrO2–Y2O3–Ta2O5, J. Am. Ceram. Soc. 74 (1991) 3061-3065.
DOI: 10.1111/j.1151-2916.1991.tb04302.x
Google Scholar
[16]
M. M. Bucko, Ionic conductivity of CaO-Y2O3-ZrO2 materials with constant oxygen vacancy concentration, J. European Ceram. Soc. 24 (2004) 1305-1308.
DOI: 10.1016/s0955-2219(03)00502-8
Google Scholar
[17]
S. M. Vidyavathy, V. Kamaraj, Microwave sintering of niobium co-doped yttria stabilized zirconia, Mod. Appl. Sci. 3 (2009) 102-105.
DOI: 10.5539/mas.v3n6p102
Google Scholar
[18]
X. Guo, Effect of Nb 2 O 5 on the space-charge conduction of Y 2 O 3-stabilized ZrO 2, Sol. State Ion. 99 (1997) 137-142.
Google Scholar
[19]
H. Scott, Phase relationships in the zirconia-yttria system, J. Mater. Sci. 10 (1975) 1527-1535.
Google Scholar
[20]
J. R. Macdonald, Impedance spectroscopy: emphasizing solid materials and systems, Appl. Opt. 28 (1989) 1083.
Google Scholar
[21]
X. Guo, Physical origin of the intrinsic grain-boundary resistivity of stabilized-zirconia: role of the space-charge layers, Sol. State Ion. 81 (1995) 235-242.
DOI: 10.1016/0167-2738(95)00180-e
Google Scholar