[1]
X. Z. Guo, N. Kazuki, K. Kazuyoshi, Y. Zhu, H. Yang, Preparation of macroporous cordierite monoliths via the sol–gel process accompanied by phase separation, J. European Ceram. Soc. 34(3) (2014) 817-823.
DOI: 10.1016/j.jeurceramsoc.2013.08.016
Google Scholar
[2]
P. Orosco, M. del C. Ruiz, J. González, Synthesis of cordierite by dolomite and kaolinitic clay chlorination. Study of the phase transformations and reaction mechanism, Powd. Tech. 267 (2014) 111-118.
DOI: 10.1016/j.powtec.2014.07.009
Google Scholar
[3]
Y. C. Dong, X. Q. Liu, Q. L. Ma, G. Y. Meng, Preparation of cordierite-based porous ceramic micro-filtration membranes using waste fly ash as the main raw materials, J. Membr. Sci. 285(2006) 173-181.
DOI: 10.1016/j.memsci.2006.08.032
Google Scholar
[4]
J. Banjuraizah, H. Mohamad, Z. A. Ahmad, Effect of impuritis content from minerals on phase transformation, densification and crystallization of alpha-cordierite glass-ceramic, J. Alloy. Comp. 509 (2011) 7645-7651.
DOI: 10.1016/j.jallcom.2011.04.129
Google Scholar
[5]
M. Valášková, J. Zdrálková, J. Tokarský, G. Simha Martynková, M. Ritz, S. Študentová, Structural characteristics of cordierite/steatite ceramics sintered from mixture scontaining pore-forming organovermiculite, Ceram. Int. 40 (2014) 15717–15725.
DOI: 10.1016/j.ceramint.2014.07.095
Google Scholar
[6]
F. J. Torres, J. Alarcón, Phase evolution by thermal treatment of equimolar cobalt–magnesium cordierite glass powders, J. European Ceram. Soc. 24(4) (2004) 681-691.
DOI: 10.1016/s0955-2219(03)00265-6
Google Scholar
[7]
S. M. Logvinkov, G. D. Semchenko, D. A. Kobyzeva, V. I. Babushkin, Thermodynamics of Phase Relations in the Subsolidus of the MgO – Al2O3 – SiO2 System, Refract. Ind. Ceram. 42(11-12) (2001) 434-439.
DOI: 10.1023/a:1015087606871
Google Scholar
[8]
Z. Yuea, J. Zhoua, Z. Maa, J. Baoa, Z. Guia, L. Lia, Crystallization and dielectric properties of cordierite gel-derived glasses containing B2O3 and P2O5, Ferroelectr. 262(1) (2001) 31-36.
Google Scholar
[9]
X. Hao, Z. Luo, X. Hu, J. Song, Y. Tang, A. Lu, Effect of replacement of B2O3 by ZnO on preparation and properties of transparent cordierite-based glass-ceramics, J. Non-Crystal. Sol. 432 (2016) 265-270.
DOI: 10.1016/j.jnoncrysol.2015.10.017
Google Scholar
[10]
L. Barbieri, C. Leonelli, T. Manfredini, R. Bertoncello, Solubility, reactivity and nucleation effect of Cr2O3 in the CaO-MgO-Al2O3-SiO2 glassy system, J. Mater. Sci. 29(23) (1994) 6273-6280.
DOI: 10.1007/bf00354571
Google Scholar
[11]
C. Leonelli, T. Manfredini, M. Paganelli, P. Pozzi, G. C. Pellacani, Crystallization of some anorthite-diopside glass precursors, J. Mater. Sci. 26(18) (1991) 5041-5046.
DOI: 10.1007/bf00549889
Google Scholar
[12]
M. Camerucci, G. Urretavizcaya, A. Cavalieri, Mechanical behavior of cordierite and cordierite–mullite materials evaluated by indentation techniques, J. European Ceram. Soc. 21(9) (2001) 1195–1204.
DOI: 10.1016/s0955-2219(00)00334-4
Google Scholar
[13]
M. Camerucci, G. Urretavizcaya, M. Castro, A. Cavalieri, Electrical properties and thermal expansion of cordierite and cordierite-mullite materials, J. European Ceram. Soc. 21(16) (2001) 2917–2923.
DOI: 10.1016/s0955-2219(01)00219-9
Google Scholar
[14]
D. P. Mukherjee, S. K. Das, The influence ofTiO2 content on the properties of glass ceramics: Crystallization, micro structure and hardness, Ceram. Int. 40 (2014) 4127–4134.
DOI: 10.1016/j.ceramint.2013.08.067
Google Scholar
[15]
S. K. Marikkannan, E. P. Ayyasamy, Synthesis, characterisation and sintering behaviour influencing the mechanical, thermal and physical properties of cordierite-doped TiO2, J. Mater. Res. Tech. 2(3) (2013) 269-275.
DOI: 10.1016/j.jmrt.2013.03.016
Google Scholar