Impact of Secondary Phases Content on the Mechanical Properties of Cordierite

Article Preview

Abstract:

The Cordierite ceramic body had been synthesized through conventional techniques solid state reaction by using non-stoichiometric composition (2.5 MgO. 1.8 Al2O3. 5 SiO2). The sintering temperature study was carried out by heat treated the samples at several degree of sintering temperature (1250 °C, 1275 °C, 1300 oC, 1325 °C, 1350 °C and 1375 °C). The qualitative and quantitative of crystalline phase analysis was accomplished by using X-ray Diffraction (XRD) technique and Rietveld structural refinement. The Scanning electron microscopy (SEM) was employed for morphology analysis. The mechanical properties of samples were determined by Vicker’s Hardness test. Rietveld quantitative phase analysis results show that α phase Cordierite constitutes up to 96.4 wt% when the samples was sintered for 2 hours at sintering temperature of 1375 °C and obtained densified and orderly crystal structure arrangement in SEM micrograph except the mechanical strength. The sample obtained the uppermost α phase Cordierite content gained the lowest hardness values (4.00.8GPa). Conversely, the sample contains 90 wt% α-cordierite and 1.4 wt% magnesium titatnate achieve highest hardness which is about 4.90.79GPa.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

650-655

Citation:

Online since:

December 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X. Z. Guo, N. Kazuki, K. Kazuyoshi, Y. Zhu, H. Yang, Preparation of macroporous cordierite monoliths via the sol–gel process accompanied by phase separation, J. European Ceram. Soc. 34(3) (2014) 817-823.

DOI: 10.1016/j.jeurceramsoc.2013.08.016

Google Scholar

[2] P. Orosco, M. del C. Ruiz, J. González, Synthesis of cordierite by dolomite and kaolinitic clay chlorination. Study of the phase transformations and reaction mechanism, Powd. Tech. 267 (2014) 111-118.

DOI: 10.1016/j.powtec.2014.07.009

Google Scholar

[3] Y. C. Dong, X. Q. Liu, Q. L. Ma, G. Y. Meng, Preparation of cordierite-based porous ceramic micro-filtration membranes using waste fly ash as the main raw materials, J. Membr. Sci. 285(2006) 173-181.

DOI: 10.1016/j.memsci.2006.08.032

Google Scholar

[4] J. Banjuraizah, H. Mohamad, Z. A. Ahmad, Effect of impuritis content from minerals on phase transformation, densification and crystallization of alpha-cordierite glass-ceramic, J. Alloy. Comp. 509 (2011) 7645-7651.

DOI: 10.1016/j.jallcom.2011.04.129

Google Scholar

[5] M. Valášková, J. Zdrálková, J. Tokarský, G. Simha Martynková, M. Ritz, S. Študentová, Structural characteristics of cordierite/steatite ceramics sintered from mixture scontaining pore-forming organovermiculite, Ceram. Int. 40 (2014) 15717–15725.

DOI: 10.1016/j.ceramint.2014.07.095

Google Scholar

[6] F. J. Torres, J. Alarcón, Phase evolution by thermal treatment of equimolar cobalt–magnesium cordierite glass powders, J. European Ceram. Soc. 24(4) (2004) 681-691.

DOI: 10.1016/s0955-2219(03)00265-6

Google Scholar

[7] S. M. Logvinkov, G. D. Semchenko, D. A. Kobyzeva, V. I. Babushkin, Thermodynamics of Phase Relations in the Subsolidus of the MgO – Al2O3 – SiO2 System, Refract. Ind. Ceram. 42(11-12) (2001) 434-439.

DOI: 10.1023/a:1015087606871

Google Scholar

[8] Z. Yuea, J. Zhoua, Z. Maa, J. Baoa, Z. Guia, L. Lia, Crystallization and dielectric properties of cordierite gel-derived glasses containing B2O3 and P2O5, Ferroelectr. 262(1) (2001) 31-36.

Google Scholar

[9] X. Hao, Z. Luo, X. Hu, J. Song, Y. Tang, A. Lu, Effect of replacement of B2O3 by ZnO on preparation and properties of transparent cordierite-based glass-ceramics, J. Non-Crystal. Sol. 432 (2016) 265-270.

DOI: 10.1016/j.jnoncrysol.2015.10.017

Google Scholar

[10] L. Barbieri, C. Leonelli, T. Manfredini, R. Bertoncello, Solubility, reactivity and nucleation effect of Cr2O3 in the CaO-MgO-Al2O3-SiO2 glassy system, J. Mater. Sci. 29(23) (1994) 6273-6280.

DOI: 10.1007/bf00354571

Google Scholar

[11] C. Leonelli, T. Manfredini, M. Paganelli, P. Pozzi, G. C. Pellacani, Crystallization of some anorthite-diopside glass precursors, J. Mater. Sci. 26(18) (1991) 5041-5046.

DOI: 10.1007/bf00549889

Google Scholar

[12] M. Camerucci, G. Urretavizcaya, A. Cavalieri, Mechanical behavior of cordierite and cordierite–mullite materials evaluated by indentation techniques, J. European Ceram. Soc. 21(9) (2001) 1195–1204.

DOI: 10.1016/s0955-2219(00)00334-4

Google Scholar

[13] M. Camerucci, G. Urretavizcaya, M. Castro, A. Cavalieri, Electrical properties and thermal expansion of cordierite and cordierite-mullite materials, J. European Ceram. Soc. 21(16) (2001) 2917–2923.

DOI: 10.1016/s0955-2219(01)00219-9

Google Scholar

[14] D. P. Mukherjee, S. K. Das, The influence ofTiO2 content on the properties of glass ceramics: Crystallization, micro structure and hardness, Ceram. Int. 40 (2014) 4127–4134.

DOI: 10.1016/j.ceramint.2013.08.067

Google Scholar

[15] S. K. Marikkannan, E. P. Ayyasamy, Synthesis, characterisation and sintering behaviour influencing the mechanical, thermal and physical properties of cordierite-doped TiO2, J. Mater. Res. Tech. 2(3) (2013) 269-275.

DOI: 10.1016/j.jmrt.2013.03.016

Google Scholar