Influence of Precursor Solution Concentration on Structure and Magnetic Properties of Zinc Oxide Thin Films

Article Preview

Abstract:

Zinc oxide thin films were deposited on glass substrate at a substrate temperature of 673K by spray pyrolysis method using different concentration of 0.0125M, 0.025M and 0.05M of Zinc acetate solutions. The effect of molar concentrations on structure, surface morphology and magnetic properties of ZnO films were investigated using x-ray diffraction, scanning electron microscopy and vibrating sample magnetometer. All deposited films were polycrystalline in nature with hexagonal wurtzite structure having a preferential growth orientation along (101) plane. An improvement of crystallinity in the deposits with increasing concentration of sprayed solution was noticed. All deposit exhibit fibrous structure which increases with increase of precursor concentration solutions. At room temperature, all deposited films were shown diamagnetic character but when cooled to 5K, they have shown paramagnetic characteristics.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

43-47

Citation:

Online since:

December 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Kumar, A Dorfman and J Hahm, J. Nanosci. Nanotechnol. 5 (2005) (1915).

Google Scholar

[2] S. A. Wolf, D D Awschalom, R. A Buhrman Scein., 294 (2001) 1488.

Google Scholar

[3] Nguyen Hoa Hong, Joe Sakai and Virginie Briz, J. Phys.: Condens. Matter 19 (2007) 036219.

Google Scholar

[4] M. A. Garcia, J. M. Merino, E. Ferrandez Pinel, A. Quesada, J. Deta Venta, M. I. Ruiz Conzalez, G. R. Castro, P. Crespo, J. Liopis, J. M. Criorizalez-Calibet, A. Hernando, Nano Lett. 7 (2007) 1489.

DOI: 10.1021/nl070198m

Google Scholar

[5] X. Xu, C. Xu, J. Dai, J. Hu, S. Fengji Li, J. Zhang, Physical Chemistry C 116 (2012) 624.

Google Scholar

[6] Chaboy, R. Boada, C. Piquer, M A Laguna-Marco, Phys. Rev. B. 82 (2010) 064411.

Google Scholar

[7] M. Debbichi, M. Souissi A. Fouzi,G. Schmerber, M. Said, M. Alouani, J. of Alloys and Compounds 598 (2014) 120.

DOI: 10.1016/j.jallcom.2014.01.247

Google Scholar

[8] S Banerjee, M Mandal, N Gayathri, M Sardar Appl. Phys. Lett. 91 (2007) 182501.

Google Scholar

[9] Z Xingwen, L Yongqiang, Lu Ye, Li Yingwei, Xia Yiben, Vacuum 81 (2006) 502.

DOI: 10.1016/j.vacuum.2006.07.008

Google Scholar

[10] S. Fay, U. Kroll, C. Bucher, E. Vallat, Sauvain, A. Shah, Sol. Energy Mat. Sol. Cells 86 (2005) 358.

Google Scholar

[11] R Ghosh, G K. Paul, D. Basak, Material. Res. Bull. 40 (2005) (1905).

Google Scholar

[12] Mihaela, G G Rusu, Sylvie Dabos-Seignon, Mihaela Rusu, Applied. Surf. Sci, 25 (2008) 4179.

Google Scholar

[13] R. Baghdad, B. Kharroubi, Abdiche, A. Bousmaha, M. Bezzerrouk, M. A. Zeinert, A. El Marssi, M. Zellama, K., Superlattice Microst. 52 (2012) 711.

DOI: 10.1016/j.spmi.2012.06.023

Google Scholar

[14] Emrah Sarica, Vildan Bilgin, Surface and Coating Tech. 286 (2016) 1.

Google Scholar

[15] Dharmedra Mishra, K C Dubey, R.K. Shukla, and A. Srivastara, Sensors and Transducers, 105 (2009) 119.

Google Scholar

[16] M. R. Islam and J. Podder, Cryst. Res. Technol. 44, No. 3 (2009) 286.

Google Scholar

[17] N. L Tarwal, A R Patil, N S Harale, A.V. Rajgure, S.S. Suryavanshi, W.R. Bae, P.S. Patil, J.H. Kim, J.H. Jang, Journal of Alloys and Compounds 598 (2014) 282.

DOI: 10.1016/j.jallcom.2014.01.200

Google Scholar

[18] J. M. D. Coey, M. Venkatesan, C. B. Fitgerald, Nature Materials 4 (2005) 173.

Google Scholar

[19] A. Sundaresam, R. Bhargavi, N. Rangarajan, U. Siddesh, C. N. R. Rao, Phys. Rev. B 74, (2006) 161306.

Google Scholar