Laser Cladding of In Situ Al-AlN Composite on Light Alloys Substrate

Article Preview

Abstract:

In situ metal matrix composites are novel composites in which the reinforcement is formed within the parent alloy by controlling chemical reactions during the composite fabrication. In recent years, there have been attempts to produce AlN composites utilizing the reactions between molten Al and a reactive gas. However, the conventional processing methods are sub-optimal and result in porosity, interface matrix-reinforcement deterioration, and high processing costs. The aim of this research is to develop a methodology to manufacture good-quality in situ Al-AlN composites in a cost effective way. In situ Al-AlN composite was synthesized with a laser cladding equipment. This composite powder can be directly deposited as coating on aluminum alloys conventionally used in the transport sector. The increase in the coatings tribological properties was demonstrated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

66-70

Citation:

Online since:

December 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Degischer, Innovative light metals: metal matrix composites and foamed aluminium, Mater. Des. 18 (1997) 221–226.

DOI: 10.1016/s0261-3069(97)00054-x

Google Scholar

[2] S.C. Tung, M.L. McMillan, Automotive tribology overview of current advances and challenges for the future, Tribol. Int. 37 (2004) 517–536.

DOI: 10.1016/j.triboint.2004.01.013

Google Scholar

[3] A. Macke, B.F. Schultz, Metal Matrix Composites Offer the Automotive Industry and Opportunity to Reduce Vehicle Weight, Improve Performance, (2012) 19–23.

DOI: 10.31399/asm.amp.2012-03.p019

Google Scholar

[4] C.M. Taylor, Automobile engine tribology-design considerations for efficiency and durability, Wear. 221 (1998) 1–8.

DOI: 10.1016/s0043-1648(98)00253-1

Google Scholar

[5] L. Dubourg, D. Ursescu, F. Hlawka, A. Cornet, Laser cladding of MMC coatings on aluminium substrate: Influence of composition and microstructure on mechanical properties, Wear. 258 (2005) 1745–1754.

DOI: 10.1016/j.wear.2004.12.010

Google Scholar

[6] P. Rodrigo, M. Campo, B. Torres, M.D. Escalera, E. Otero, J. Rams, Microstructure and wear resistance of Al-SiC composites coatings on ZE41 magnesium alloy, Appl. Surf. Sci. 255 (2009) 9174–9181.

DOI: 10.1016/j.apsusc.2009.06.122

Google Scholar

[7] J. Rams, a. Ureña, M. Campo, Sol–Gel Coatings as Active Barriers to Protect Ceramic Reinforcement in Aluminum Matrix Composites, Adv. Eng. Mater. 6 (2004) 57–61.

DOI: 10.1002/adem.200300519

Google Scholar

[8] A. Urena, Gomez De Salazar JM, L. Gil, M. Escalera, J. Baldonedo, Scanning and transmission electron microscopy study of the microstructural changes occurring in aluminium matrix composites reinforced with SiC particles during casting and welding: interface reactions, J. Microsc. 196 (1999).

DOI: 10.1046/j.1365-2818.1999.00610.x

Google Scholar

[9] H. Ribes, R. Da Silva, M. Suéry, T. Bretheau, Effect of interfacial oxide layer in Al–SiC particle composites on bond strength and mechanical behaviour, Mater. Sci. Technol. 6 (2013).

DOI: 10.1179/mst.1990.6.7.621

Google Scholar

[10] P. Rodrigo, L. Gil, A.U.R.E. Na, U. Rey, J. Carlos, Interfacial reactions in an Al-Cu-Mg ( 2009 )/ SiCw Part II Arc welding, 6 (2009) 429–439.

Google Scholar

[11] J.L. Ortiz, V. Amigó, M. -D. Salvador, R. Pérez, Microestructura y propiedades mecánicas de materiales compuestos de matriz Al-Mg-Si-Cu reforzada con AINp , procesados por extrusión de polvos, 348 (2000) 348–356.

DOI: 10.3989/revmetalm.2000.v36.i5.585

Google Scholar

[12] S. Fale, A. Likhite, J. Bhatt, Nanoindentation studies of ex situ AlN/Al metal matrix nanocomposites, J. Alloys Compd. 615 (2015) S392–S396.

DOI: 10.1016/j.jallcom.2013.12.239

Google Scholar

[13] H. Abdoli, E. Saebnouri, S.K. Sadrnezhaad, M. Ghanbari, T. Shahrabi, Processing and surface properties of Al-AlN composites produced from nanostructured milled powders, J. Alloys Compd. 490 (2010) 624–630.

DOI: 10.1016/j.jallcom.2009.10.121

Google Scholar

[14] J.G. Lee, H.A. Ma, X.L. Lee, Y.J. Zheng, G.H. Zuo, X. Jia, Preparation and characterization of Al/AlN composites sintered under high pressure, J. Mater. Sci. 42 (2007) 9460–9464.

DOI: 10.1007/s10853-007-1934-x

Google Scholar

[15] P. Yu, M. Balog, M. Yan, G.B. Schaffer, M. Qian, In situ fabrication and mechanical properties of Al-AlN composite by hot extrusion of partially nitrided AA6061 powder, J. Mater. Res. 26 (2011) 1719–1725.

DOI: 10.1557/jmr.2011.143

Google Scholar

[16] C. Borgonovo, D. Apelian, M.M. Makhlouf, Aluminum nanocomposites for elevated temperature applications, Jom. 63 (2011) 57–64.

DOI: 10.1007/s11837-011-0030-5

Google Scholar

[17] H.Z. Ye, X.Y. Liu, B. Luan, In situ synthesis of AlN in Mg-Al alloys by liquid nitridation, J. Mater. Process. Technol. 166 (2005) 79–85.

DOI: 10.1016/j.jmatprotec.2004.06.033

Google Scholar

[18] M. Zhong, W. Liu, Laser surface cladding: the state of the art and challenges, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 224 (2010) 1041–1060.

Google Scholar

[19] Y. Sun, M. Hao, Statistical analysis and optimization of process parameters in Ti6Al4V laser cladding using Nd: YAG laser, Opt. Lasers Eng. 50 (2012) 985–995.

DOI: 10.1016/j.optlaseng.2012.01.018

Google Scholar