[1]
H. Degischer, Innovative light metals: metal matrix composites and foamed aluminium, Mater. Des. 18 (1997) 221–226.
DOI: 10.1016/s0261-3069(97)00054-x
Google Scholar
[2]
S.C. Tung, M.L. McMillan, Automotive tribology overview of current advances and challenges for the future, Tribol. Int. 37 (2004) 517–536.
DOI: 10.1016/j.triboint.2004.01.013
Google Scholar
[3]
A. Macke, B.F. Schultz, Metal Matrix Composites Offer the Automotive Industry and Opportunity to Reduce Vehicle Weight, Improve Performance, (2012) 19–23.
DOI: 10.31399/asm.amp.2012-03.p019
Google Scholar
[4]
C.M. Taylor, Automobile engine tribology-design considerations for efficiency and durability, Wear. 221 (1998) 1–8.
DOI: 10.1016/s0043-1648(98)00253-1
Google Scholar
[5]
L. Dubourg, D. Ursescu, F. Hlawka, A. Cornet, Laser cladding of MMC coatings on aluminium substrate: Influence of composition and microstructure on mechanical properties, Wear. 258 (2005) 1745–1754.
DOI: 10.1016/j.wear.2004.12.010
Google Scholar
[6]
P. Rodrigo, M. Campo, B. Torres, M.D. Escalera, E. Otero, J. Rams, Microstructure and wear resistance of Al-SiC composites coatings on ZE41 magnesium alloy, Appl. Surf. Sci. 255 (2009) 9174–9181.
DOI: 10.1016/j.apsusc.2009.06.122
Google Scholar
[7]
J. Rams, a. Ureña, M. Campo, Sol–Gel Coatings as Active Barriers to Protect Ceramic Reinforcement in Aluminum Matrix Composites, Adv. Eng. Mater. 6 (2004) 57–61.
DOI: 10.1002/adem.200300519
Google Scholar
[8]
A. Urena, Gomez De Salazar JM, L. Gil, M. Escalera, J. Baldonedo, Scanning and transmission electron microscopy study of the microstructural changes occurring in aluminium matrix composites reinforced with SiC particles during casting and welding: interface reactions, J. Microsc. 196 (1999).
DOI: 10.1046/j.1365-2818.1999.00610.x
Google Scholar
[9]
H. Ribes, R. Da Silva, M. Suéry, T. Bretheau, Effect of interfacial oxide layer in Al–SiC particle composites on bond strength and mechanical behaviour, Mater. Sci. Technol. 6 (2013).
DOI: 10.1179/mst.1990.6.7.621
Google Scholar
[10]
P. Rodrigo, L. Gil, A.U.R.E. Na, U. Rey, J. Carlos, Interfacial reactions in an Al-Cu-Mg ( 2009 )/ SiCw Part II Arc welding, 6 (2009) 429–439.
Google Scholar
[11]
J.L. Ortiz, V. Amigó, M. -D. Salvador, R. Pérez, Microestructura y propiedades mecánicas de materiales compuestos de matriz Al-Mg-Si-Cu reforzada con AINp , procesados por extrusión de polvos, 348 (2000) 348–356.
DOI: 10.3989/revmetalm.2000.v36.i5.585
Google Scholar
[12]
S. Fale, A. Likhite, J. Bhatt, Nanoindentation studies of ex situ AlN/Al metal matrix nanocomposites, J. Alloys Compd. 615 (2015) S392–S396.
DOI: 10.1016/j.jallcom.2013.12.239
Google Scholar
[13]
H. Abdoli, E. Saebnouri, S.K. Sadrnezhaad, M. Ghanbari, T. Shahrabi, Processing and surface properties of Al-AlN composites produced from nanostructured milled powders, J. Alloys Compd. 490 (2010) 624–630.
DOI: 10.1016/j.jallcom.2009.10.121
Google Scholar
[14]
J.G. Lee, H.A. Ma, X.L. Lee, Y.J. Zheng, G.H. Zuo, X. Jia, Preparation and characterization of Al/AlN composites sintered under high pressure, J. Mater. Sci. 42 (2007) 9460–9464.
DOI: 10.1007/s10853-007-1934-x
Google Scholar
[15]
P. Yu, M. Balog, M. Yan, G.B. Schaffer, M. Qian, In situ fabrication and mechanical properties of Al-AlN composite by hot extrusion of partially nitrided AA6061 powder, J. Mater. Res. 26 (2011) 1719–1725.
DOI: 10.1557/jmr.2011.143
Google Scholar
[16]
C. Borgonovo, D. Apelian, M.M. Makhlouf, Aluminum nanocomposites for elevated temperature applications, Jom. 63 (2011) 57–64.
DOI: 10.1007/s11837-011-0030-5
Google Scholar
[17]
H.Z. Ye, X.Y. Liu, B. Luan, In situ synthesis of AlN in Mg-Al alloys by liquid nitridation, J. Mater. Process. Technol. 166 (2005) 79–85.
DOI: 10.1016/j.jmatprotec.2004.06.033
Google Scholar
[18]
M. Zhong, W. Liu, Laser surface cladding: the state of the art and challenges, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 224 (2010) 1041–1060.
Google Scholar
[19]
Y. Sun, M. Hao, Statistical analysis and optimization of process parameters in Ti6Al4V laser cladding using Nd: YAG laser, Opt. Lasers Eng. 50 (2012) 985–995.
DOI: 10.1016/j.optlaseng.2012.01.018
Google Scholar