Electrochemical Properties of Li4Ti5O12 as a Negative Electrode for Calcium Secondary Batteries in Ca(TFSI)2/THF Electrolyte

Article Preview

Abstract:

We investigated the electrochemical behavior and properties of lithium titanate oxide as the negative electrode for calcium ion batteries during charge/discharge tests in tetrahydrofuran (THF)-based electrolyte. The reversible charge and discharge capacities of ~150 and ~145 mAh g–1 were observed, respectively, in THF-based electrolyte. They are larger than those obtained in propylene carbonate-based electrolyte. Moreover, interesting charge/discharge curves were observed, which might be attributed to structural changes during the insertion/extraction of calcium ions. These results were confirmed by the charge/discharge curves and scanning electron microscopy images.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

97-101

Citation:

Online since:

December 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Lv, T. Xu, P. Saha, M.K. Datta, M.L. Gordin, A. Manivannan, P.N. Kumta and D. Wang: J. Eelectrochem. Soc. Vol. 160 (2013) p. A351.

Google Scholar

[2] N. Singh, T.S. Arthur, C. Ling, M. Matsui and F. Mizuno: Chem. Commun. Vol. 49 (2013) p.149.

Google Scholar

[3] T.S. Arthur, N. Singh and M. Matsui: Electrochem. Commun. Vol. 16 (2012) p.103.

Google Scholar

[4] B. Peng, J. Liang, Z. Tao and J. Chen: J. Mater. Chem. Vol. 19 (2009) p.103.

Google Scholar

[5] D. Datta, J. Li and V.B. Shenoy: Appl. Mater. Interfaces Vol. 6 (2014) p.1788.

Google Scholar

[6] G.G. Amatucci, F. Badway, A. Singhal, B. Beaudoin, G. Skandan, T. Bowmer, I. Plitz, N. Pereira, T. Chapman and R. Jaworski: J. Electrochem. Soc. Vol. 148 (2001) p. A940.

DOI: 10.1149/1.1383777

Google Scholar

[7] M. hayashi, H. Arai, H. Ohtsuka and Y. Sakurai: J. Power Sources Vol. 119-121 (2003) p.617.

Google Scholar

[8] N. Emery, C. Herold and P. Lagrange: J. Solid State Chem. Vol. 178 (2005) p.2947.

Google Scholar

[9] T.E. Weller, M. Ellerby, S.S. Saxena, R.P. Smith and N.T. Skipper: Nat. Phys. Vol. 1 (2005) p.39.

Google Scholar

[10] C.S. Kim, Y.T. Jeong and S-.K. Jeong: Adv. Mat. Res. Vol. 1120 (2015) p.119.

Google Scholar

[11] R. Mohtadi and F. Mizuno: Beilstein J. Nanotechnol. Vol. 5 (2014) p.1291.

Google Scholar

[12] T. Ohzuku, A. Ueda and N. Yamamoto: J. Electrochem. Soc. Vol. 142 (1995) p.1431.

Google Scholar

[13] S. Scharner, W. Weppner and P. Schmid-BeurmannL: J. Electrochem. Soc. Vol. 146 (1999) p.857.

Google Scholar

[14] K.M. Colbow, J.R. Dahn and R.R. Haering: J. Power Sources Vol. 26 (1989) p.397.

Google Scholar

[15] Z. Yang, D. Choi, S. Kerisit, K.M. Rosso, D. Wang, J. Zhang, G. Graff and J. Liu: J. Power Sources Vol. 192 (2009) p.588.

Google Scholar

[16] W.K. Pang, V.K. Peterson, N. Sharma, J-.J. Shiu and S-.H. Wu: J. Am. Chem. Soc. Vol. 26 (2014) p.2318.

Google Scholar

[17] N. Wu, Y-.C. Lyu, R-.J. Xiao, X. Yu, Y-.X. Yin, X-.Q. Yang, H. Li, L. Gu and Y-.C. Guo: NPG Asia Mater. Vol. 6 (2014) p.1.

Google Scholar

[18] N. Wu, Z.Z. Yang, H.R. Yao, Y.X. Yin, L. Gu and Y.G. Guo: Angew. Chem. Vol. 54 (2015) p.5757.

Google Scholar

[19] Y. Sun, L. Zhao, H. Pan, X. Lu, L. Gu, Y-.S. Hu, H. Li, M. Armand, Y. Ikuhara, L. Chen and X. Huang: Nat. Commun. Vol. 4 (2013) p.1.

Google Scholar

[20] M. Kitta, K. Kuratani, M. Tabuchi, N. Takeichi, T. Akita, T. Kiyobayashi and M. Kohyama: Electrochim. Acta Vol. 148 (2014) p.175.

DOI: 10.1016/j.electacta.2014.10.050

Google Scholar

[21] L. Zhao, H-.L. Pan, Y-.S. Hu, H. Li and L-.Q. Chen: Chin. Phys. B Vol. 21 (2012) p.028201.

Google Scholar