Modelling of Instability and Fracture Effects in the Sheet Metal Forming Based on an Extended X-FLC Concept

Article Preview

Abstract:

The industrial necking prediction in sheet metal forming is still based on the Forming Limit Diagram (FLD) as initially proposed by Keeler. The FLD is commonly specified by the Nakajima tests and evaluated with the so called cross section method. Although widely used, the FLC concept has numerous serious limitations. In the paper the influences of bending on the FLC as well as postponed crack limits will be discussed. Both criteria will be combined to an extended FLC concept (X-FLC). The new concept demonstrates that the Nakajima tests are not only appropriate for the evaluation of the necking instability, but also for the detection of the real crack strains. For the evaluation of the crack strains, a new local thinning method is proposed and tested for special 6xxx Al-alloys.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

15-32

Citation:

Online since:

December 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. P. Keeler, Determination of forming limit in automotive stamping, Soc. of Automotive Engineering, Nr. 650 535, pp.1-9, (1965).

Google Scholar

[2] Y. Bai, T. Wierzbicki, Application of extended Mohr-Coulomb criterion to ductile fracture, Int J Fract 161: 1–20, (2010).

DOI: 10.1007/s10704-009-9422-8

Google Scholar

[3] M. Gorji, B. Berisha, P. Hora, F. Barlat: Modeling of localization and fracture phenomena in stress and strain space for sheet metal forming, Int J of Mater Form, DOI 10. 1007/s12289-015-1242-y, (2015).

DOI: 10.1007/s12289-015-1242-y

Google Scholar

[4] M. Gorji, Instability and fracture models to optimize the metal forming and bending crack behavior of Al-Alloy composites, Diss ETH 23066, (2015).

Google Scholar

[5] M. Gorji, B. Berisha, N. Manopulo, P. Hora. Effect of through thickness strain distribution on shear fracture hazard and its mitigation by using multilayer aluminum sheets, J Materials Processing Technology, 232: 19-33, (2016).

DOI: 10.1016/j.jmatprotec.2016.01.014

Google Scholar

[6] P. Hora, L. Tong, M. Gorji, N. Manopulo, B. Berisha: Significance of the local sheet curvature in the prediction of sheet metal forming limits by necking instabilities and cracks. Proceedings of NUMIFORM (2016).

DOI: 10.1051/matecconf/20168011003

Google Scholar

[7] P. Hora, M. Gorji, B. Berisha, Modelling of fracture effects in the sheet metal forming based on an extended FLC evaluation method in combination with fracture criterions, IDDRG-2016, 18-31, (2016).

DOI: 10.1088/1757-899x/159/1/012030

Google Scholar

[8] W. Volk, P. Hora, New algorithm for a robust user-independent evaluation of beginning instability for the experimental FLC determination, Int J Mat Forming, 4: 339-346, (2010).

DOI: 10.1007/s12289-010-1012-9

Google Scholar

[9] F.M. Neuhauser, O.R. Terrazas, N. Manopulo, P. Hora, C.J. Van Tyne, Stretch bending - the plane within the sheet where strains reach the forming limit curve, IDDRG-2016, 94-98, (2016).

DOI: 10.1088/1757-899x/159/1/012011

Google Scholar

[10] R. Schleich, M. Sindel, M. Liewald, Investigation on the effect of curvature on forming limit prediction for aluminium sheet alloys, International Journal of Material Forming, 2: 69-74, (2009).

DOI: 10.1007/s12289-009-0394-z

Google Scholar

[11] K. Isik, M. B. Silva, A.E. Tekkaya, P.A.F. Martins, Formability limits by fracture in sheet metal forming, Journal of Processing Technology, 214: 1557-1565, (2014).

DOI: 10.1016/j.jmatprotec.2014.02.026

Google Scholar

[12] J.H. Kim, J.H. Sung, K. Piao, R.H. Wagoner, The shear fracture of dual-phase steel, International Journal of Plasticity, 27: 1658-1676, (2011).

DOI: 10.1016/j.ijplas.2011.02.009

Google Scholar

[13] P. Larour, H. Schauer, J. Lackner, E. Till, Edge crack simulation with the modular smiley, tool, 457-477, IDDRG-2016, (2016).

Google Scholar

[14] D. Mohr, S.J. Marcedet, Micromechanically-motivated phenomenological Hosford-Coulomb model for predicting ductile fracture initiation at low stress triaxialities, Int J of Solids and Structures, 67-68: 40-55, (2015).

DOI: 10.1016/j.ijsolstr.2015.02.024

Google Scholar

[15] Y. Luo, H. Huh, S. Lim, K. K. Pack, New ductile fracture criterion for prediction of fracture forming limit diagrams of sheet metals, Int J of Solids and Structures, 49: 3605-3615, (2012).

DOI: 10.1016/j.ijsolstr.2012.02.016

Google Scholar

[16] P. Hora, B. Berisha, M. Gorji, N. Manopulo, A generalized approach for the prediction of necking and rupture phenomena in the sheet metal forming, IDDRG-2012, (2012).

Google Scholar

[17] T. Wierzbicki, Y. Bao, Y-W. Lee, Y. Bai, Calibration and evaluation of seven fracture models, International Journal of Mechanical Sciences 47: 719-743, (2005).

DOI: 10.1016/j.ijmecsci.2005.03.003

Google Scholar

[18] A.K. Gosh, Tensile instability and necking in materials with strain hardening and strain-rate hardening, Acta Metallurgica, 25: 1413-1424, (1977).

DOI: 10.1016/0001-6160(77)90072-4

Google Scholar

[19] J.E. Hockett, O.D. Sherby, Large strain deformation of polycrystalline metals at low homologous temperatures, Journal of Mechanics and Physics of Solids, 23: 87-98, (1975).

DOI: 10.1016/0022-5096(75)90018-6

Google Scholar

[20] A. Hensel, T. Spittel, Kraft- und Arbeitsbedarf bildsamer Formgebungsverfahren, Verlag Grundstoffindustrie, (1978).

Google Scholar

[21] F. Barlat et al., Plane stress yield function for aluminum alloy sheets – part 1: theory, International Journal of Plasticity, 19: 1297-1319, (2003).

DOI: 10.1016/s0749-6419(02)00019-0

Google Scholar

[22] O. Cazacu, B. Plunkett, F. Barlat, Orthotropic yield criterion for hexagonal closed packed metals, International Journal of Plasticity, 22: 1171-1194, (2006).

DOI: 10.1016/j.ijplas.2005.06.001

Google Scholar

[23] R. Hill, A theory of the yielding and plastic flow of anisotropic metals, Proceedings of the Royal Society London A, 193: 281-297, (1948).

Google Scholar

[24] D. Vegter, AH van den Boogaard, A plane stress yield function for anisotropic sheet material by interpolation of biaxial stress states, International Journal of Plastictiy, 22: 557-580, (2006).

DOI: 10.1016/j.ijplas.2005.04.009

Google Scholar