[1]
E.C. Aifantis, On the microstructural origin of certain inelastic models, J. Eng. Mater. Technol. 106 (1984) 326-330.
Google Scholar
[2]
N.A. Fleck, J.W. Hutchinson, A reformulation of strain gradient plasticity, J. Mech. Phys. Solids 49 (2001) 2245-2271.
DOI: 10.1016/s0022-5096(01)00049-7
Google Scholar
[3]
M.E. Gurtin, A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations, J. Mech. Phys. Solids 50 (2002) 5-32.
DOI: 10.1016/s0022-5096(01)00104-1
Google Scholar
[4]
J. Christoffersen, J.W. Hutchinson, A class of phenomenological corner theories of plasticity. J. Mech. Phys. Solids 27 (1979) 465-487.
DOI: 10.1016/0022-5096(79)90026-7
Google Scholar
[5]
J. Simo, A J2-flow theory exhibiting a corner-like effect and suitable for large-scale computation, Comput. Methods Appl. Mech. Eng. 62 (1987) 169-194.
DOI: 10.1016/0045-7825(87)90022-3
Google Scholar
[6]
M. Kuroda, A higher-order strain-gradient plasticity theory with a corner-like effect, Int. J. Solids Struct. 58 (2015) 62-72.
DOI: 10.1016/j.ijsolstr.2014.12.019
Google Scholar
[7]
M. Kuroda, A strain-gradient plasticity theory with a corner-like effect: a thermodynamics-based extension, Int. J. Fracture (in press).
DOI: 10.1007/s10704-015-0055-9
Google Scholar
[8]
M. Kuroda, V. Tvergaard, A phenomenological plasticity model with non-normality effects representing observations in crystal plasticity, J. Mech. Phys. Solids 49 (2001) 1239-1263.
DOI: 10.1016/s0022-5096(00)00080-6
Google Scholar
[9]
M.E. Gurtin, L. Anand, A theory of strain-gradient plasticity for isotropic, plastically irrotational materials. Part I: small deformations, J. Mech. Phys. Solids 53 (2005) 1624-1649.
DOI: 10.1016/j.jmps.2004.12.008
Google Scholar
[10]
N.A. Fleck, J.W. Hutchinson, J.R. Willis, Strain gradient plasticity under non-proportional loading. Proc. R. Soc. London, A 470 (2014) 2014267.
DOI: 10.1098/rspa.2014.0267
Google Scholar
[11]
N.A. Fleck, J.W. Hutchinson, J.R. Willis, Guidelines for constructing strain gradient plasticity theories. J. Appl. Mech. 82 (2015) 071002.
DOI: 10.1115/1.4030323
Google Scholar
[12]
M. Kuroda, Strain gradient plasticity: a variety of treatments and related fundamental issues, in: H. Altenbach et al. (Eds. ), From Creep Damage Mechanics to Homogenization Methods (Advanced Structural Materials 64), Springer Int. Pub., Switzerland, 2015, pp.199-218.
DOI: 10.1007/978-3-319-19440-0_9
Google Scholar