Transient Thermal Analysis of Cold Strip Rolling Considering Rough Surface Contacts

Article Preview

Abstract:

This paper presents a transient thermal analysis of cold strip rolling, integrating both the microscale asperity deformation and macroscale strip deformation. A statistical characterisation was carried out to obtain the contact pressure and thermal contact conductance at the roll-strip interface. To address the effects of rolling speed and temperature rise, Johnson-cook constitutive model of yielding strength was employed to incorporate the strain rate and temperature variation in the analysis. It was found that the developed model can successfully predict both the interface contact stress and temperature rise in the rolling bite.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

548-553

Citation:

Online since:

December 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Johnson and H. Kudo, The use of upper-bound solutions for the determination of temperature distributions in fast hot rolling and axi-symmetric extrusion processes. Int. J. Mech. Sci. 1. 2-3(1960) 175-191.

DOI: 10.1016/0020-7403(60)90038-2

Google Scholar

[2] A. A. Tseng, A numerical heat transfer analysis of strip rolling. J. Heat. Transf. 106. 3(1984) 512-517.

DOI: 10.1115/1.3246708

Google Scholar

[3] E. J. Patula, Steady-state temperature distribution in a rotating roll subject to surface heat fluxes and convective cooling. J. Heat. Transf. 103. 1(1981) 36-41.

DOI: 10.1115/1.3244425

Google Scholar

[4] W. Y. D. Yuen, Effective cooling of work rolls in strip rolling. Mater. Sci. Tech. 4. 7(1988) 628-634.

Google Scholar

[5] M. Pietrzyk and J. G. Lenard, A study of heat transfer during flat rolling. Int. J. Numer. Meth. Eng. 30. 8(1990): 1459-1469.

DOI: 10.1002/nme.1620300809

Google Scholar

[6] K. Yamada, S. Ogawa and S. Hamauzu, Two-dimensional thermo-mechanical analysis of flat rolling using rigid-plastic finite element method. ISIJ Int. 31. 6(1991) 566-570.

DOI: 10.2355/isijinternational.31.566

Google Scholar

[7] A. A. Tseng and F. Z. Zhao, Multidimensional inverse transient heat conduction problems by direct sensitivity coefficient method using a finite-element scheme. Numer. Heat. Transfer. 29. 3(1996) 365-380.

DOI: 10.1080/10407799608914987

Google Scholar

[8] A. R. Shahani, S. Setayeshi, S. A. Nodamaie, M. . A Asadi and S. Rezaie, Prediction of influence parameters on the hot rolling process using finite element method and neural network. J. Mater. Process. Tech. 209. 4(2009) 1920-(1935).

DOI: 10.1016/j.jmatprotec.2008.04.055

Google Scholar

[9] C.H. Wu, L.C. Zhang, S.Q. Li, Z.L. Jiang and P.L. Qu, A novel multi-scale statistical characterisation of interface pressure and friction in metal strip rolling. Int. J. Mech. Sci. 89 (2014) 391-402.

DOI: 10.1016/j.ijmecsci.2014.10.004

Google Scholar

[10] G. R. Johnson and W. H. Cook, A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. Proceedings of the 7th International Symposium on Ballistics 21(1983) 541–547.

Google Scholar

[11] J. A. Greenwood and J. B. Williamson, Contact of nominally flat surfaces. P. Roy. Soc. Lond. A. Mat. 295. 1442(1966) 300-319.

Google Scholar

[12] M. G. Cooper, B. B. Mikic and M. M. Yovanovich, Thermal contact conductance. Int. J. Heat. Mass. Tran. 12. 3 (1969): 279-300.

DOI: 10.1016/0017-9310(69)90011-8

Google Scholar

[13] Y. Chen, L. C. Zhang, J. A. Arsecularatne and C. Montross, Polishing of polycrystalline diamond by the technique of dynamic friction, part 1: Prediction of the interface temperature rise. Int. J. Mach. Tool. Manu. 46. 6 (2006): 580-587.

DOI: 10.1016/j.ijmachtools.2005.07.018

Google Scholar

[14] K. A. Nuri and J. Halling, The normal approach between rough flat surfaces in contact. Wear 1975; 32(1): 81-93.

DOI: 10.1016/0043-1648(75)90206-9

Google Scholar

[15] M. A. Meyers, Dynamic Behaviour of Materials, John Wiley & Sons, Inc., Hoboken, NJ, USA, (2005).

Google Scholar