Microstructures and Properties of Ti-25Nb-15Zr Alloy for Spectacle Frame

Article Preview

Abstract:

Mechanical properties and microstructures of a new β Ti-25Nb-15Zr alloy for spectacle frame were studied. The results show that the optimum cold rotary swaging reduction of the alloy is between 50% and 70%. The wire of 3mm in diameter exhibited an equiaxed microstructure consisting only β single phase and fine grain with less than 10mm size when the alloy is heat treated at 1003K for 1.8Ks. While it has good shape memory property, and the maximum complete recovery strain was up to 3% at room temperature. At the same time, the flattened frame legs were solution-treated to improve their elastic behavior, so the residual strain was completely or partly recovered due to transformation of the microstructure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

191-195

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y.F. Zhu, L.Q. Wang, M.M. Wang, Z.T. Liu, J.I. Qin and D. Zhang: Journal of the Mechanical Behavior of Biomedical Materials, Vol. 12 (2012), p.151.

Google Scholar

[2] M. Niinomi, T. Akahori, S. Katsura, K. Yamauchi and M. Ogawa: Materials Science Engineering C, Vol. 27 (2007) No. 1, p.154.

Google Scholar

[3] W. Elmay, F. Prima, T. Gloriant, B. Bolle, Y. Zhong, E. Patoor and P. Laheurte: Journal of the Mechanical Behavior of Biomedical Materials, Vol. 18 (2013), p.47.

DOI: 10.1016/j.jmbbm.2012.10.018

Google Scholar

[4] L. Q. Wang, W. J. Lu, J.I. Qin, F. Zhang and D. Zhang: Materials Characterization, Vol. 61 (2010) No. 5, p.535.

Google Scholar

[5] H.F. Lin, J.M. Cao, T.X. Wang, Y.J. Lei and H.B. Yang: Rare Metal Letters, Vol. 26 (2007) No. 6, p.26. (In Chinese).

Google Scholar

[6] W.Y. Guo, H. Xing, J. Sun: Journal of Chinese Electron Microscopy Society, Vol. 27 (2008) No. 6, p.469. (In Chinese).

Google Scholar

[7] L.Q. Wang, G.J. Yang, H. B. Yang, J.M. Cao, W.J. Lv and D. Zhang: Rare Metal Materials and Engineering, Vol. 38 (2009) No. 4, p.579.

Google Scholar

[8] T. Saito, T. Furuta, J. H. Hwang, S. Kuramoto: Science, Vol. 300 (2003) No. 5618, p.464.

Google Scholar

[9] T. Saito, T. Furuta, J. H. Hwang and T. Sakuma: Materials Science Forum, Vol. 426-432 (2003) No. 1, p.681.

Google Scholar

[10] W.Y. Guo, J. Sun, L.X. Ling and J.S. Wu: The Chinese Journal of Nonferrous Metals, Vol. 18 (2008) No. 9, p.1635. (In Chinese).

Google Scholar

[11] M. Niinomi, M. Nakai and J. Hieda: Acta Biomater, Vol. 8 (2012) No. 11, p.3888.

Google Scholar

[12] M. Nakai, M. Niinomi and T. Oneda: Metallurgical and Materials Transactions Part A, Vol. 43 (2012) No. 1, p.294.

Google Scholar

[13] X.Q. Ma, Y. Han, Z.T. Yu, Q.Y. Sun and J.L. Niu: Rare Metal Materials and Engneering, Vol. 41 (2012) No. 9, p.1535.

Google Scholar

[14] H.Y. Kim, J.I. Kim, T. Inamura, H. Hosoda and S. Miyazaki: Materials Science and Engineering A, Vol. 438-440(2006), p.839.

Google Scholar

[15] K.J. II, K.H. Young, T. Inamura, H. Hosoda and S. Miyazaki: Materials Transactions, Vol. 45 (2004) No. 7, p.2443.

Google Scholar

[16] J.I. Kim, H.Y. Kim, T. Inamura, H. Hosoda and S. Miyazaki: Materials Transactions, Vol. 47 (2006) No. 3, p.505.

Google Scholar

[17] Y. L. Hao, S. J. Li, S. Y. Sun, C.Y. Zheng and R. Yang: Acta Biomaterialia, Vol. 3 (2007), p.277.

Google Scholar

[18] Y. L. Hao, S. J. Li, S. Y. Sun and R. Yang: Material Science and Engineering A, Vol. 441 (2006), p.112.

Google Scholar

[19] T. Grosdidier, M.J. Philippe: Material Science and Engineering A, Vol. 291 (2000), p.218.

Google Scholar