In Situ Investigations of Structures Evolution of Mg Doped Zn4Sb3

Article Preview

Abstract:

The beta-phase of Zn4Sb3 has been regarded as a very promising thermoelectric material since middle nineties, owing to its unique merit: intermediate temperature region (200-400 °C), made of cheap, non-toxic and abundant elements and high thermoelectric property. However, the thermal stability of Zn4Sb3 seems to be an inherent obstacle for the practical application during the working temperatures. Herein, magnesium doped Zn-Sb semiconductor (Mg0.04Zn3.96Sb3) was investigated thoroughly in-situ during thermal annealing up to 600 K, whilst both microstructure and electronic structures were recorded via the combination of synchrotron-based two dimensional X-ray diffraction techniques and the X-ray photoemission spectroscopy. While the time-resolved grazing incidence XRD reveals the preserved crystal structures during thermal annealing to 600 K, XPS measurement demonstrate the robustness of electronic structures. On basis of these findings, it was concluded in the end that the doping of magnesium significantly improves the thermal stability of zinc-antimonite compounds and introduces minor influence on the electronic structure of Zn-Sb alloy. Our study may propose an effective approach towards the wild application of Zn4Sb3 related thermoelectric materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

178-184

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. J. Synder, E. S. Toberer: Nat. Mater Vol. 7 (2008), pp.105-114.

Google Scholar

[2] L. E. Bell: Science. Vol. 321 (2008), p.1457.

Google Scholar

[3] M. Liu, X. Y. Qin, C. S. Liu, L. Pan, and H. X. Xin: Phys. Rev. B Vol 81 (2010), p.245215.

Google Scholar

[4] F. J. DiSalvo: Science Vol. 285 (1999), p.703.

Google Scholar

[5] Y. He, P. Lu, X. Shi, F. F. Xu, T. S. Zhang, G. J. Synder, C. Uher and L. D. Chen: Adv. Mater Vol. 25 (2015), pp.6478-6488.

Google Scholar

[6] L. Bjerg, G. K. Madsen, B. B. Iversen: Chem. Mater Vol. 23(2011), pp.3907-3914.

Google Scholar

[7] M. V. Vedernikov, and E. K. Iordanishvili: Proceedings ICT 98-17th International Conference on Thermoelectrics (1998), pp.37-42.

Google Scholar

[8] G.J. Snyder, M. Christensen, E. Nishibori, T. Caillat and B.B. Iversen: Nat. Mater Vol. 4 (2004), pp.458-463.

Google Scholar

[9] T. Caillat, J. –P. Fleurial and A. Borshchevsky: J. Phys. Chem. Solids. Vol. 58 (1996), p.1119.

Google Scholar

[10] Y. Mozharivskyi, Y. Janssen, J. L. Harringa, A. Kracher, A. O. Tsokol and G. J. Miller: Chem. Mater Vol. 18 (2006), pp.822-831.

Google Scholar

[11] L. T. Zhang, M. Tsutsui, K. Ito and M. Yamaguchi: J. Alloys. Compd. Vol. 358 (2003), p.252.

Google Scholar

[12] B. L. Pedersen, H. Birkedal, E. Nishibori, A. Bentien, M. Sakata, M. Nygren, P. T. Frederiksen and B. B. Iversen: Chem. Mater Vol. 19 (2007), pp.6304-6311.

DOI: 10.1021/cm702247b

Google Scholar

[13] B. L. Pedersen, H. Yin, H. Birkedal, M. Nygren and B. B. Iversen: Chem. Mater. Vol. 22 (2010), pp.2375-2383.

Google Scholar

[14] Q. Q. Wang, X. Y. Qin, D. Li, R. R. Sun, T. H. Zou and N. N. Wang: J. Appl. Phys. Vol. 113 (2013), p.124901.

Google Scholar

[15] L. Pan, X.Y. Qin, H.X. Xin, D. Li, J.H. Sun, J. Zhang, C.J. Song and R.R. Sun: Intermetallics. Vol. 18 (2010), pp.1106-1110.

DOI: 10.1016/j.intermet.2010.01.008

Google Scholar

[16] F.S. Liu, L.C. Pan, W.Q. Ao, L.P. He, X.X. Li, H.T. Li and J. Q. Li: J. Electr. Mater. Vol. 41 (2012), pp.2118-2125.

Google Scholar

[17] Q. Q. Wang, X. Y. Qin, D. Li and T. H. Zou: Appl. Phys. Lett Vol. 102 (2013), p.154101.

Google Scholar

[18] X. Y. Qin, M. Liu, L. Pan, H. X. Xin, J. H. Sun and Q. Q. Wang: J. Appl. Phys Vol. 109 (2011), p.033714.

Google Scholar

[19] B. L. Pedersen, H. Birkedal, M. Nygren, P. T. Frederiksen and B. B. Iversen: J. Appl. Phys Vol. 105 (2009), p.013517.

Google Scholar

[20] B. B. Iversen et al.: Philos. Mag. A Vol. 72 (1995), p.1357.

Google Scholar

[21] T. Caillat, A. Borshchevsky, and J. -P. Fleurial, US patent 6942728B2. (2005).

Google Scholar

[22] A. P. Hammersley, S. O. Svensson, M. Hanfland, A. N. Fitch, and D. Hausermann: High Pressure. Res Vol. 14 (1996), pp.235-248.

DOI: 10.1080/08957959608201408

Google Scholar

[23] F. Song, J. W. Wells, Z. Jiang, M. Saxegaard and E. Wahlström: ACS Appl. Mater. Interfaces Vol. 7 (2015), pp.8525-8532.

DOI: 10.1021/acsami.5b00264

Google Scholar

[24] F. Song, J. W. Wells, K. Handrup, Z. S. Li, S. N. Bao, K. Schulte, M. Ahola-Tuomi, L. C. Mayor, J. C. Swarbrick, E. W. Perkins, L. Gammelgaard and P. Hofmann: Nat. Nanotech Vol. 4 (2009), pp.373-376.

DOI: 10.1038/nnano.2009.82

Google Scholar

[25] https: /www2. warwick. ac. uk/fac/sci/physics/research/condensedmatt/surface/exp/xps/links/ xpspeak_manual. doc.

Google Scholar

[26] H. Yin and B. B. Iversen: Sci. Adv. Mater Vol. 3 (2011), pp.592-595.

Google Scholar

[27] Z. H. Zheng, P. Fan, J. T. Luo, P. J. Liu, X. M. Cai, G. X. Liang, D. P. Zhang and Y. Fan: Intermetallics. Vol. 64 (2015), pp.18-22.

Google Scholar

[28] Z. H. Zheng, P. Fan, P. J. Liu, J. T. Luo, X. M. Cai, G. X. Liang, D. P. Zhang, F. Ye, Y. Z. Li and Q. Y. Lin: Appl. Sur. Sci Vol. 292 (2014), pp.823-827.

Google Scholar

[29] J. P. Lin, X. D. Li, G. J. Qiao, Z. Wang, J. Carrete, Y. Ren, L. Z. Ma, Y. J. Fei, B. F. Yang, L, Lei and J. Li: J. Am. Chem. Soc Vol. 136 (2014), pp.1497-1504.

DOI: 10.1021/ja410605f

Google Scholar

[30] P. H. Michael Böttger, S. Diplas, E. Flage-Larsen, Ø. Prytz and T. G. Finstad: J. Phys.: Condens. Mater. Vol. 23 (2011), p.265502.

DOI: 10.1088/0953-8984/23/26/265502

Google Scholar

[31] F. Z. Lv, C. H. Hu, D. H. Wang,  W. Zhao, S. Wei, Y. Zhong and H. Y. Zhou: Mater. Res. Inv. Vol. 18 (2014), pp.706-710.

Google Scholar