Modeling the Hot Deformation Behavior of Ti-50.8%Ni Shape Memory Alloy

Article Preview

Abstract:

The characteristics of isothermal deformation behavior of Ti-50.8%Ni shape memory alloys were investigated by thermal simulation tests, which were performed on Gleeble-3500 thermal simulation machine. The range of deformation temperatures was 800°C to 1050°C and that of strain rates was 0.01s-1 to 10s-1. The stress-true strain curves were corrected by considering deformation-heating and friction. The results show that the flow stress increases with the decrease of deformation temperatures or the increase of strain rates. The constitutive relationship of hot deformation was established on the basis of the Arrhenius equation and the average activation energy of 182 KJ/mol was obtained.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

154-158

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Otsuka and X. Ren: Prog. Mater. Sci. Vol. 50 (2005), p.511.

Google Scholar

[2] W. Cai, X.L. Meng and L.C. Zhao: Curr. Opin. St. M. Vol. 9 (2005), p.296.

Google Scholar

[3] J. Tyber, J. McCormick, K. Gall, R. DesRoches, H.J. Maier and A.E.A. Maksoud: J. Eng. Math. Vol. 133 (2007), p.1009.

DOI: 10.1061/(asce)0733-9399(2007)133:9(1009)

Google Scholar

[4] C. P. Frick, A. M. Ortega, J. T. A. El.M. Maksound, H. J. Maier, Y. Liu and K. Gall: Mater. Sci. Eng. A-Struct, Vol. 405 (2005), p.34.

Google Scholar

[5] X.Q. Yin, X.J. Mi, Y.F. Li and B.D. Gao: J. Mater. Eng. Perform. Vol. 21 (2012), p.2684.

Google Scholar

[6] A. Etaati and K. Dehghani: Mater. Chem. Phys. Vol. 140 (2013), P. 208.

Google Scholar

[7] A. Etaati, K. Dehghani, GR Ebrahimi and H. Wang: Met. Mater. Int. Vol. 19 (2013), p.5.

Google Scholar

[8] M. Morakabati, Sh. Kheirandish, M. Aboutalebi, A.K. Taheri and S.M. Abbasi: Mater. Sci. Eng. A-Struct, Vol. 528 (2011), p.5656.

Google Scholar

[9] H. Mirzadeh and M.H. Parsa: J. Alloy Compd. Vol. 614 (2014). p.56.

Google Scholar

[10] W.H. Zhang and S.H. Zhang: Acta Metal. (Sin. ). Vol. 42 (2006). p.1036.

Google Scholar

[11] K. Dehghani and A.A. Khamei: Mater. Sci. Eng. A-Struct, Vol. 527 (2010). p.648.

Google Scholar

[12] S.J. Wang, X.J. Mi, X.Q. Yin and L.Y. Li: Rare Metal. Vol. 31 (2012). p.323.

Google Scholar

[13] M. Belbasi, M.T. Salehi and S.A.A.A. Mousavi: J. Mater. Eng. Perform. Vol. 21 (2012), p.2594.

Google Scholar

[14] X.Q. Yin, X.J. Mi, B.D. Gao and Y.F. Li: Rare Metal. (Sin. ). Vol. 33 (2009). p.921.

Google Scholar

[15] J. Castellanos, I. Rieiro, M. Carsí, J. Muñoz, M. El Mehtedi and O.A. Ruano: Mater. Sci. Eng. A-Struct, Vol. 517 (2009), p.191.

Google Scholar

[16] Y.C. Lin, Y. C. Xia, X. M. Chen and M. S. Chen: Comput. Mater. Sci. Vol. 50 (2010). p.227.

Google Scholar

[17] M. Belbasi, M.T. Salehi and S.A.A.A. Mousavi: J. Mater. Eng. Perform. Vol. 21 (2012). p.2594.

Google Scholar

[18] J. Zhang, H. Di, X. Wang, Y. Cao, J, Zhang and T. Ma: Mater. Des. Vol. 44 (2013). p.354.

Google Scholar

[19] R.L. Goetz and S.L. Semiatin: J. Mater. Eng. Perform. Vol. 10 (2001), p.710.

Google Scholar

[20] H.J. McQueen and N.D. Ryan: Mater. Sci. Eng. A-Struct, Vol. 322 (2002), p.43.

Google Scholar