Simulation of the Effect of Second Phase Particles in Different Shapes on Grain Growth of Mg Alloy by Phase Field Methods

Article Preview

Abstract:

The effect of second phase particles in different shapes on grain growth of AZ31 Mg alloy has been simulated by the phase field methods under realistic spatial-temporal scales. The long-range orientation field variables are chosen to express the temporal microstructure evolution and crystal orientation. The expression of the local free energy density equation was modified by adding the expression term of second phase particles, and the simulated results show that the grain boundary migration is pinned by the second phase particles during the grain growth, which is agree with the Zener pinning observation. When the shape of particles is different and the volume fraction is 10%, the effect of refining grain is different too, the oval particles are the strongest, followed by the rod particles, and the effect of spherical particles are weaker. The research will help to understand the mechanisms of grain growth containing the second phase particles strengthening.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

159-165

Citation:

Online since:

January 2017

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Chen Zhenhua: Magnesium alloy. (Chem. Ind. Publication, Beijing 2004), (In Chinese).

Google Scholar

[2] S.G. Bian, Z. Q. Li, K. Chen, J. S. Liu, H. Z. Zhou and J. N. Yang, Mater. Mech. Eng. Vol. 34 (2010) No. 4, p.72.

Google Scholar

[3] K. D. Wang, L. L. Chang, Y. N. Wang and J. C. C. Huang, Chinese. J. Nonferrous Met. Vol. 19 (2009) No. 3, p.418(In Chinese).

Google Scholar

[4] Y. Ali, D. Qiu, B. Jiang, F. Pan and M. X. Zhang. J. Alloys and Compd. Vol. 619 (2015) p.639.

Google Scholar

[5] D. S. Svyetlichnyy. Comput. Mater. Sci. Vol. 77 (2013) p.408.

Google Scholar

[6] A. Artemev, Y. Jin and A. G. Khachaturyan, Acta. Mater. Vol. 49 (2001), p.1165.

Google Scholar

[7] P. R. Cha, D. H. Yeon and J. K. Yoon, J. Cryst. Growth Vol. 274 (2005) p.281.

Google Scholar

[8] D. Fan, L. Q. Chen, S. P. Chen and P. W. Voorhees, Computer. Mater. Sci. Vol. 9, (1998) p.329.

Google Scholar

[9] A. Mallick. Computer. Mater. Sci. Vol. 67 (2013) pp.27-34.

Google Scholar

[10] N. Wang, Y. H. Wen and L. Q. Chen. Computer. Mater. Sci. Vol. 93 (2014) p.81.

Google Scholar

[11] G. Z. Zhou, Y. X. Wang and Z. Chen. Acta Metall Sin. Vol. 48 (2012) p.227(In Chinese).

Google Scholar

[12] Y. P. Zong, M. T. Wang and W. Guo. Acta. Phys. Sin., Vol. 58 (2009) p. S161 (In Chinese).

Google Scholar

[13] Y. Wu, B. Y. Zong, X. G. Zhang and M. T. Wang. Metall. Mater. Trans. A, Vol. 44 (2013) p.1599.

Google Scholar

[14] D. Raabe. Computational Material Science: The Simulation of Materials Microstructure and Properties. (Wiley-VCH, Germany, 1998).

Google Scholar

[15] V. Kumar, Z. Z. Fang and P. C. Fife. Mater. Sci. Eng. A Vol. 528 (2010) p.254.

Google Scholar

[16] D. Fan and L. Q. Chen. Acta Mater. Vol. 45 (1996) p.611.

Google Scholar

[17] S. M. Allen and J. W. Cahn. Acta. Metall. Vol. 27 (1979) p.1085.

Google Scholar

[18] J. W. Cahn and J. E. Hilliard. J Chem. Phys. Vol. 28 (1958) p.258.

Google Scholar

[19] N. Moelans, B. Blanpain and P. Wollants. Acta. Mater. Vol. 53 (2005) p.1771.

Google Scholar

[20] N. Moelans, B. Blanpain and P. Wollants. Acta. Mater. Vol. 54 (2006) p.1175.

Google Scholar

[21] Y. H. Wen, B. Wang, J. P. Simmons and Y. Wang. Acta. Mater. Vol. 54 (2006) p. (2087).

Google Scholar

[22] A. M. Zhang, H. Hao, X. G. Zhang. Trans. Nonferrous Met. Soc. China Vol. 23 (2013) p.3167 (In Chinese).

Google Scholar

[23] G. T. Bae, J. H. Bae, D. H. Kang, H. Lee and N. J. Kim. Met. Mater. Int. Vol. 15 (2009) p.1.

Google Scholar

[24] H.P. Longworth and C. V. Thompson, J. Appl. Phys. Vol. 69 (1991) p.3929.

Google Scholar