[1]
Q Liu, X Zhang, Y Ge, J Wang and J.H. Cui. Metall Mater Trans, Vol. 37A (2006) No 11, p.3233.
Google Scholar
[2]
I.S. Batra, G.K. Dey, U.D. Kulkarni and S Banerjee. J Nucl Mater, Vol. 299 (2001) No 2, p.91.
Google Scholar
[3]
U Holzwarth and H Stamn. J Nucl Matter, Vol. 279 (2000) No 1, p.31.
Google Scholar
[4]
D.J. Edwards, B.N. Singh and S Tahtinen. J Nucl Matter, Vol. 367-370 (2007) No 3, p.904.
Google Scholar
[5]
P Liu, B.X. Kang and X.G. Gao. Mater Sci Eng A, Vol. 265 (1999) No 1-2, p.262.
Google Scholar
[6]
F.X. Huang, J.S. Ma, H.L. Ning, Z.T. Geng, C Lu, S.M. Guo, X.T. Yu, T Wang, H Li and H. F. Luo. Scr Mater, Vol. 48 (2003) No 1, p.97.
Google Scholar
[7]
A Chbihi, X Sauvage and D Blavette. Acta Mater, Vol. 60 (2012) No 11, p.4575.
Google Scholar
[8]
J.H. Su, P Liu, H.J. Li, F.Z. Ren and Q.M. Dong. Mater lett, Vol. 61 (2007) No 27, p.4963.
Google Scholar
[9]
R.W. Knights and P Wilkes. Metall Trans, Vol 4 (1973) No 1, p.2389.
Google Scholar
[10]
Z Rdzawski and J Stobrawa. Scr Metall Mater, Vol 20 (1986) No 1, p.341.
Google Scholar
[11]
T Kamijo, T Furukawa and M Watanabe. Acta Metall. Mater, Vol 36 (1988) No 3, p.1763.
Google Scholar
[12]
G.C. Weatherly, P Humble and D Borland. Acta Metall Mater, Vol 27 (1979) No 4, p.1815.
Google Scholar
[13]
Y Komen and J Rezek. Metall Trans A, Vol 6 (1975) No 1, p.549.
Google Scholar
[14]
Y Jin, K Adachi, T Takeuchi and H.G. Suzuki. J Mater Sci, Vol 33 (1998) No 2, p.1333.
Google Scholar
[15]
T Fujii, H Nakazawa, M Kato and U Dahmen. Acta Mater, Vol 48 (2000) No 5, p.1033.
Google Scholar
[16]
M Hatakeyama, T Toyama, Y Nagai, M Hasekawa, M Eldrup and B.N. Singh. Mater Trans, Vol 49 (2008) No 3, p.518.
Google Scholar
[17]
M Hatakeyama, T Toyama, J Yang, Y Nagai, M Hasekawa and T Ohkubo. J Nucl Mater, Vol 386-388 (2009) p.852.
Google Scholar
[18]
I.S. Batra, G.K. Dey, U.D. Kulkarni and S Banerjee. Mater Sci Eng A, Vol 356 (2002) No 1-2, p.32.
Google Scholar
[19]
N.Y. Tang, D.N.R. Taplin and G.L. Dunlop. Mater Sci technol, Vol 1 (1985) No 4, p.270.
Google Scholar
[20]
H.F. Xie, X.J. Mi, G.J. Huang, B.D. Gao, X.Q. Yin, Y.F. Li. rare met, Vol 30 (2011) No 6, p.650.
Google Scholar
[21]
H.Q. Li, S.S. Xie, X.J. Mi and P.Y. Wu. J Mater Sci Technol, Vol 23 (2007) No 3, p.795.
Google Scholar
[22]
C Watanabe, R Monzen and K Tazaki. J Mater Sci, Vol 43 (2008) No 3, p.813.
Google Scholar
[23]
S.H. Zhou and R.E. Napolitano. Acta Mater, Vol l58 (2010) No 6, p.2186.
Google Scholar
[24]
G Wojciech, C.Z. Kai, P.C. Yuan. J Alloy Compd, Vol 509 (2011) No 3, p.8313.
Google Scholar
[25]
G Ghosh. Acta Mater, Vol 55 (2007) No 10, p.3347.
Google Scholar
[26]
T.B. Massalski. Binary alloy phase diagrams. 2nd ed. Metals Park (OH): ASM, 1987, 982.
Google Scholar
[27]
M Appello and P Fenici. Mater Sci Eng A, Vol 102 (1998) No 3, p.69.
Google Scholar
[28]
P Singh, A Lawley, S Friedman and Y.V. Murty. Mater Sci Eng A, Vol 145 (1991) No 2, p.243.
Google Scholar
[29]
Z Rdzawski and J Stobrawa. Scr Metall, Vol 20 (1986) No 3, p.341.
Google Scholar
[30]
K.J. Zeng, H Hamalainen and K Lilius. Scr Metall Mater, Vol 32 (1995) No 2, p. (2009).
Google Scholar
[31]
C Aguilar, V Martinez, J.M. Palacios, S Ordonez and O Pavez. Sci Mater, Vol 7 (2007) No 3, p.213.
Google Scholar