Effect of Heat Treatment on the Microstructure of Cu-Cr-Zr Alloy

Article Preview

Abstract:

Effect of Heat treatments on microstructure in a Cu-0.71Cr-0.12Zr alloy (in wt.%) have been investigated. The microstructures are analyzed by optical microscope, scanning electron microscope, transmission electron microscope and high-resolution transmission electron microscope after each step of heat treatments. The results show that the as-cast microstructure of Cu-Cr-Zr alloy is Cu matrix, Cr dendrite and eutectic structure which is composed of Cu and Cu5Zr phase with a fine lamellar structure. By increasing the homogenization temperature or prolonging the holding time, the eutectic structure is dissolved into the matrix gradually and the volume fraction of the Cr phases is obviously reduced. The precipitation of Cr phase prevents from Zr-rich phases dissolving in the matrix. And the proper homogenizing process is 900°C×12 h. When the alloy aged at 450°C for 24 h, the crystallography of Cr precipitates and the orientation relationship between Cr precipitates and Cu matrix is bcc structure and KS-OR, respectively. The disk-shaped precipitate is identified as Cu5Zr phase and their habit plane is parallel to {111}Cu plane.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

166-170

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Q Liu, X Zhang, Y Ge, J Wang and J.H. Cui. Metall Mater Trans, Vol. 37A (2006) No 11, p.3233.

Google Scholar

[2] I.S. Batra, G.K. Dey, U.D. Kulkarni and S Banerjee. J Nucl Mater, Vol. 299 (2001) No 2, p.91.

Google Scholar

[3] U Holzwarth and H Stamn. J Nucl Matter, Vol. 279 (2000) No 1, p.31.

Google Scholar

[4] D.J. Edwards, B.N. Singh and S Tahtinen. J Nucl Matter, Vol. 367-370 (2007) No 3, p.904.

Google Scholar

[5] P Liu, B.X. Kang and X.G. Gao. Mater Sci Eng A, Vol. 265 (1999) No 1-2, p.262.

Google Scholar

[6] F.X. Huang, J.S. Ma, H.L. Ning, Z.T. Geng, C Lu, S.M. Guo, X.T. Yu, T Wang, H Li and H. F. Luo. Scr Mater, Vol. 48 (2003) No 1, p.97.

Google Scholar

[7] A Chbihi, X Sauvage and D Blavette. Acta Mater, Vol. 60 (2012) No 11, p.4575.

Google Scholar

[8] J.H. Su, P Liu, H.J. Li, F.Z. Ren and Q.M. Dong. Mater lett, Vol. 61 (2007) No 27, p.4963.

Google Scholar

[9] R.W. Knights and P Wilkes. Metall Trans, Vol 4 (1973) No 1, p.2389.

Google Scholar

[10] Z Rdzawski and J Stobrawa. Scr Metall Mater, Vol 20 (1986) No 1, p.341.

Google Scholar

[11] T Kamijo, T Furukawa and M Watanabe. Acta Metall. Mater, Vol 36 (1988) No 3, p.1763.

Google Scholar

[12] G.C. Weatherly, P Humble and D Borland. Acta Metall Mater, Vol 27 (1979) No 4, p.1815.

Google Scholar

[13] Y Komen and J Rezek. Metall Trans A, Vol 6 (1975) No 1, p.549.

Google Scholar

[14] Y Jin, K Adachi, T Takeuchi and H.G. Suzuki. J Mater Sci, Vol 33 (1998) No 2, p.1333.

Google Scholar

[15] T Fujii, H Nakazawa, M Kato and U Dahmen. Acta Mater, Vol 48 (2000) No 5, p.1033.

Google Scholar

[16] M Hatakeyama, T Toyama, Y Nagai, M Hasekawa, M Eldrup and B.N. Singh. Mater Trans, Vol 49 (2008) No 3, p.518.

Google Scholar

[17] M Hatakeyama, T Toyama, J Yang, Y Nagai, M Hasekawa and T Ohkubo. J Nucl Mater, Vol 386-388 (2009) p.852.

Google Scholar

[18] I.S. Batra, G.K. Dey, U.D. Kulkarni and S Banerjee. Mater Sci Eng A, Vol 356 (2002) No 1-2, p.32.

Google Scholar

[19] N.Y. Tang, D.N.R. Taplin and G.L. Dunlop. Mater Sci technol, Vol 1 (1985) No 4, p.270.

Google Scholar

[20] H.F. Xie, X.J. Mi, G.J. Huang, B.D. Gao, X.Q. Yin, Y.F. Li. rare met, Vol 30 (2011) No 6, p.650.

Google Scholar

[21] H.Q. Li, S.S. Xie, X.J. Mi and P.Y. Wu. J Mater Sci Technol, Vol 23 (2007) No 3, p.795.

Google Scholar

[22] C Watanabe, R Monzen and K Tazaki. J Mater Sci, Vol 43 (2008) No 3, p.813.

Google Scholar

[23] S.H. Zhou and R.E. Napolitano. Acta Mater, Vol l58 (2010) No 6, p.2186.

Google Scholar

[24] G Wojciech, C.Z. Kai, P.C. Yuan. J Alloy Compd, Vol 509 (2011) No 3, p.8313.

Google Scholar

[25] G Ghosh. Acta Mater, Vol 55 (2007) No 10, p.3347.

Google Scholar

[26] T.B. Massalski. Binary alloy phase diagrams. 2nd ed. Metals Park (OH): ASM, 1987, 982.

Google Scholar

[27] M Appello and P Fenici. Mater Sci Eng A, Vol 102 (1998) No 3, p.69.

Google Scholar

[28] P Singh, A Lawley, S Friedman and Y.V. Murty. Mater Sci Eng A, Vol 145 (1991) No 2, p.243.

Google Scholar

[29] Z Rdzawski and J Stobrawa. Scr Metall, Vol 20 (1986) No 3, p.341.

Google Scholar

[30] K.J. Zeng, H Hamalainen and K Lilius. Scr Metall Mater, Vol 32 (1995) No 2, p. (2009).

Google Scholar

[31] C Aguilar, V Martinez, J.M. Palacios, S Ordonez and O Pavez. Sci Mater, Vol 7 (2007) No 3, p.213.

Google Scholar