Crystallization Kinetics in Cu64.5Zr35.5 Binary Metallic Glass

Article Preview

Abstract:

The crystallization kinetics of melt-spun Cu64.5Zr35.5 amorphous alloy ribbons was investigated using differential scanning calorimetry (DSC) at different heating rates. Besides, the Kissinger and isoconversional approaches were used to obtain the crystallization kinetic parameters. As shown in the results, the activation energies for glass transition and crystallization process at the onset, peak and end crystallization temperatures were obtained by means of Kissinger equation to be 577.65 ± 34, 539.86 ± 54, 518.25 ± 20 and 224.84 ± 2 kJ/mol, respectively. The nucleation activation energy Enucleation is greater than grain growth activation energy Egrowth, indicating that the nucleation process is harder than grain growth. The local activation energy Eα decreases in the whole crystallization process, which suggests that crystallization process is increasingly easy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

233-238

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Inoue, W. Zhang, T. Zhang, K. Kurosaka, J. Non-cryst. Solids 304 (2002) 200-209.

Google Scholar

[2] A. Inoue, W. Zhang, T. Zhang, K. Kurosaka, Acta Mater. 49 (2001) 2645-2652.

Google Scholar

[3] A. Inoue, W. Zhang, Formation, Mater. Trans. 43 (2002) 2921-2925.

Google Scholar

[4] Z.W. Zhu, H.F. Zhang, W.S. Sun, B.Z. Ding, Z. Q, Hu, Scripta Mater. 54 (2006) 1145-1149.

Google Scholar

[5] O. J Kwon, Y. K Lee, S. O Park, J.C. Lee, Y.C. Kim, E. Fleury, Mater. Sci. Eng. A 449 (2007) 169-171.

Google Scholar

[6] N. B. Guo, C.Y. Tang, J. Wang, C.H. Hu, J. Alloys Comp. 629 (2015) 11-15.

Google Scholar

[7] W.K. An, X. Xiong, Y. Liu, J.H. Li, A.H. Cai, Y. Luo, T.L. Li, X.S. Li, J. Alloys Comp. 486 (2009) 288-292.

Google Scholar

[8] Z.Z. Yuan, X.D. Chen, B.X. Wang, Z.J. Chen, J. Alloys Comp. 399 (2005) 166-172.

Google Scholar

[9] Y.J. Yang, D.W. Xing, J. Shen, J.F. Sun, S.D. Wei, H.J. He, D. G. Mccartney, J. Alloys Comp. 415 (2006) 106-110.

Google Scholar

[10] M. Lasocka, Mater. Sci. Eng. 23 (1976) 173-177.

Google Scholar

[11] S.X. Wang, S.G. Quan, C. Dong, Thermochim. Acta. 532 (2012) 92-95.

Google Scholar

[12] J.J. Yi, W.Q. Xu, X.Z. Xiong, L.T. Kong, M. Ferry, J.F. Li, Mater. Lett. 159 (2015) 403-405.

Google Scholar

[13] M. Iqbal, J.I. Akhter, W.S. Sun, J.Z. Zhao, M. Ahmad, W. Wei, Z.Q. Hu, H.F. Zhang, Mater. Lett. 60 (2006) 662-665.

Google Scholar

[14] W. Lu, B. Yan, W.H. Huang, J. Non-cryst. Solids 351 (2005) 3320-3324.

Google Scholar

[15] P. Gong, K.F. Yao, H.Y. Ding, Mater. Lett. 156 (2015) 146-149.

Google Scholar

[16] X. Ou, G.Q. Zhang, X. Xu, L.N. Wang, J.F. Liu, J.Z. Jiang, J. Alloys Comp. 441 (2007) 181-184.

Google Scholar

[17] P.J. Tao, Y.Z. Yang, X. Chen, C.M. Wang, J. Gao, Mater. Lett. 121 (2014) 177-180.

Google Scholar

[18] T. Akahira, T. Sunose, Res. Rep. Chiba. Inst. Technol. (Sci. Technol. ) 16 (1971) 22-31.

Google Scholar

[19] T. Ozawa, J. Therm. Anal. 2 (1970) 301-324.

Google Scholar