Compositional Dependent Crystal Structure in NiMnGa Matensite

Article Preview

Abstract:

The effect of composition on martensitic phase transformation and structure in polycrystalline NiMnGa was investigated through Ni substitution for Mn, Ga and Mn substitution for Ga. The martensitic transformation temperatures almost linerly increase with increasing Ni content in Ni50+xMn50-xGa25, Ni50+yMn25Ga25-y and Mn content in Ni50Mn25+zGa25-z. The increases in rate of the martensitic transformation temperatures are different for the three conditions. It is large for Ga substituted by Ni, slow for both Mn substituted by Ni and Ga substituted by Mn. Analysis shows that electronic concentration is an important factor to influence the martensitic transformation temperature in the Ni-Mn-Ga alloys. The results show that Ni excess stabilizes the NM martensitic structure and Mn excess stabilizes the 7M martensitic strcuture in broad composition range.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

244-248

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C.B. Jiang, J.H. Liu, J.M. Wang, L.H. Xu and H.B. Xu: Acta Mater. Vol. 53 (2005) p.1111.

Google Scholar

[2] Z.B. Li, N. Xu, Y.D. Zhang, C. Esling, J.M. Raulot, X. Zhao and L. Zuo: Acta Mater. Vol. 61 (2013) p.3858.

Google Scholar

[3] C.B. Jiang, G. Feng, S.K. Gong and H.B. Xu: Mater. Sci. Eng. A Vol. 342 (2003) No. 4, p.231.

Google Scholar

[4] Y.P. Zhang, R.A. Hughes, J.F. Britten, P.A. Dube, J.S. Preston and G.A. Botton: J. Appl . Phys. Vol. 110 (2011) No. 1, pp.013910-1.

Google Scholar

[5] P.Q. Zheng, N.J. Kucza, Z.L. Wang, P. Müllner and D.C. Dun: Acta Mater. Vol. 86 (2015) p.95.

Google Scholar

[6] N. Xu, J.M. Raulot, Z.B. Li, Y.D. Zhang, J. Bai, W. Peng, X.Y. Meng, X. Zhao, L. Zuo and C. Esling: J. Alloys Compounds. Vol. 614 (2014) pp.126-128.

DOI: 10.1016/j.jallcom.2014.06.079

Google Scholar

[7] M. Pötschke, U. Gaitzsch, S. Roth, B. Rellinghausand L. Schultz: J. Magn. Magn. Mater. Vol. 316 (2007) No. 2, p.383.

Google Scholar

[8] J.C. Bennett, C.V. Hyatt, M.A. Gharghouri, S. Farrell, M. Robertson, J. Chen and G. Pirge: Mater. Sci. Eng. A Vol. 378 (2004) No. 1-2, p.409.

Google Scholar

[9] U. Gaitzsch, J. Romberg, M. Pötschke, S. Roth and P. Müllner: Scripta Mater. Vol. 65 (2011) No. 8, p.679.

DOI: 10.1016/j.scriptamat.2011.07.011

Google Scholar

[10] C.B. Jiang, J.H. Liu, J.M. Wang, L.H. Xu and H.B. Xu: Acta Mater. Vol. 53 (2005) p.1111.

Google Scholar

[11] H.E. Karaca, I. Karaman, B. Basaran, D.C. Lagoudas, Y.I. Chumlyakov and, H.J. Maier: Acta Mater. Vol. 55 (2007) p.4253.

DOI: 10.1016/j.actamat.2007.03.025

Google Scholar

[12] D.L. Schlagel, Y.L. Wu, W. Zhang and T.A. Lograsso: J. Alloys Compounds. Vol. 312 (2000) p.77.

Google Scholar

[13] Y.Q. Ma, C.B. Jiang, Y. Li, H.B. Xu, C.P. Wang and X.J. Liu: Acta Mater. Vol. 55 (2007) p.1533.

Google Scholar

[14] M. Pötschke, S. Weiss, U. Gaitzsch, D.Y. Cong, C. Hürrich, S. Roth and L. Schultz: Scripta Mater. Vol. 63 (2010) No. 4, p.386.

DOI: 10.1016/j.scriptamat.2010.04.027

Google Scholar

[15] Z.B. Li, Y.D. Zhang, C. Esling, X. Zhao and L. Zuo: Acta Mater. Vol. 59 (2011) p.3390.

Google Scholar

[16] J.M. Wang and C.B. Jiang: J. Crystal Growth. Vol. 3 10 (2008) No. 4, p.865.

Google Scholar