Effect of Structure on Refractive Index for SiO2-B2O3-Ta2O5-ZrO2-Na2O System Glass

Article Preview

Abstract:

The relationship between structure and refractive index for SiO2-B2O3- Ta2O5-ZrO2-Na2O system glasses was investigated via Raman spectrum and V-block technology. The results showed that refractive index of the borosilicate glasses is mainly influenced by network structure such as planar [BO3] triangle, [BO4] tetrahedron and [SiO4] tetrahedron. Refractive index decreases from 1.629 to 1.616 when B2O3 content increases from 15 mol% to 50 mol%. Na2O component has a strong preference to provide non-bridging oxygen (NBO) atoms, which not only promotes the conversion of [BO3] to [BO4] unit but also depolymerizes the network structure. The refractive index has the highest value, =1.6264, when Na2O content reaches to 28 mol%. Both ZrO2 and Ta2O5 can promote structure formation of borosilicate glasses and make higher connection degree. However, the refractive index increasing with Ta2O5 addition is quicker than that with ZrO2 addition.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

265-271

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Hartmann, A.G. Schott and M. Germany: Proceedings of SPIE, Vol. 8167 (2011) No. 2, pp.1-14.

Google Scholar

[2] L. Wang, H. Oku and M. Ishikawa: Proceedings of SPIE, Vol. 9193 (2014), pp.1-11.

Google Scholar

[3] R.I. Ibrahim: International Research Journal of Natural Sciences, Vol. 2 (2014) No. 4, pp.1-9.

Google Scholar

[4] J.L. Rayces, M. Rosete-Aguilar: Applied Optics, Vol. 38 (1999) No. 10, p.2028-(2039).

Google Scholar

[5] T. Harada: Journal of the American Ceramic Society, Vol. 87 (2004) No. 3, pp.408-411.

Google Scholar

[6] U. Kolberg, U. Wolfel and M. Winkler-Trudewig. U.S. Patent 6, 380, 112B1. (2002).

Google Scholar

[7] L. Cormier, D. Neuville and G. Calas: Journal of Non-crystalline Solids, Vol. 274 (2000) No. 1, pp.110-114.

Google Scholar

[8] A.A. Belyustin, I.S. Ivanovskaya, V.Y. Livshits and E.M. Polunina: Glass Physics and Chemistry, Vol. 28 (2002) No. 2, pp.96-102.

DOI: 10.1023/a:1015329614779

Google Scholar

[9] D.A. Mckeown, I.S. Muller, A.C. Buechele, I.L. Pegg and C.A. Kendziora: Journal of Non-crystalline Solids, Vol. 262 (2000) No. 1-3, pp.126-134.

DOI: 10.1016/s0022-3093(99)00691-2

Google Scholar

[10] D.A. Mckeown, I.S. Muller, A.C. Buechele and I.L. Pegg: Journal of Non-crystalline Solids, Vol. 258 (1999) No. 1-3, pp.98-109.

Google Scholar

[11] O.N. Koroleva, L.A. Shabunina and V.N. Bykov: Glass and Ceramics, Vol. 67 (2011) No. 11, pp.11-12.

Google Scholar

[12] A.A. Osipov, L.M. Osipova and V.E. Eremyashev: Glass Physics and Chemistry, Vol. 39 (2013) No. 2, pp.105-112.

Google Scholar

[13] G. Padmaja, P. Kistaiah: The Journal of Physical Chemistry A, Vol. 113 (2009) No. 11, pp.2397-2404.

Google Scholar

[14] J.P. Wan, J.S. Cheng and P. Lu: Journal of Wuhan University of Technology. Materials Science Edition, Vol. 23 (2008) No. 3, pp.419-421.

Google Scholar

[15] D. Moncke, D. Ehrt, E.V. Christos-Platon, I.K. Efstratios and G.K. Angelos: European Journal of Glass Science and Technology, Vol. 47 (2006) No. 5, pp.133-137.

Google Scholar

[16] A. Edukondalu, S. Rahman, K.S. Kumar and D. Sreenivasu: Vibrational Spectroscopy, Vol. 71 (2014), pp.91-97.

Google Scholar