[1]
Liebig J. About some nitrogen compounds[J]. Ann. Pharm, 1834, 10(10).
Google Scholar
[2]
Teter D M, Hemley R J. Low-compressibility carbon nitrides[J]. Science, 1996, 271(5245): 53.
DOI: 10.1126/science.271.5245.53
Google Scholar
[3]
Thomas A, Fischer A, Goettmann F, et al. Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts[J]. Journal of Materials Chemistry, 2008, 18(41): 4893-4908.
DOI: 10.1039/b800274f
Google Scholar
[4]
Wang X, Maeda K, Thomas A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature materials, 2009, 8(1): 76-80.
DOI: 10.1038/nmat2317
Google Scholar
[5]
Yan S C, Li Z S, Zou Z G. Photodegradation performance of g-C3N4 fabricated by directly heating melamine[J]. Langmuir, 2009, 25(17): 10397-10401.
DOI: 10.1021/la900923z
Google Scholar
[6]
Cheng N, Jiang P, Liu Q, et al. Graphitic carbon nitride nanosheets: one-step, high-yield synthesis and application for Cu2+ detection[J]. Analyst, 2014, 139(20): 5065-5068.
DOI: 10.1039/c4an00914b
Google Scholar
[7]
Zhang X, Wang H, Wang H, et al. Single-Layered Graphitic-C3N4 Quantum Dots for Two-Photon Fluorescence Imaging of Cellular Nucleus[J]. Advanced Materials, 2014, 26(26): 4438-4443.
DOI: 10.1002/adma.201400111
Google Scholar
[8]
Dong G, Zhang Y, Pan Q, et al. A fantastic graphitic carbon nitride (g-C3N4) material: electronic structure, photocatalytic and photoelectronic properties[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2014, 20: 33-50.
DOI: 10.1016/j.jphotochemrev.2014.04.002
Google Scholar
[9]
Yu Y, Zhou Q, Wang J. The ultra-rapid synthesis of 2D graphitic carbon nitride nanosheets via direct microwave heating for field emission[J]. Chemical Communications, 2016, 52(16): 3396-3399.
DOI: 10.1039/c5cc10258h
Google Scholar
[10]
Bai X, Cao C, Xu X. Formation and characterization of flower-like carbon nitride by pyrolysis of melamine[J]. Materials Science and Engineering: B, 2010, 175(2): 95-99.
DOI: 10.1016/j.mseb.2010.07.008
Google Scholar
[11]
Yuan B, Chu Z, Li G, et al. Water-soluble ribbon-like graphitic carbon nitride (g-C3N4): green synthesis, self-assembly and unique optical properties[J]. Journal of Materials Chemistry C, 2014, 2(39): 8212-8215.
DOI: 10.1039/c4tc01421a
Google Scholar
[12]
Gao J, Zhou Y, Li Z, et al. High-yield synthesis of millimetre-long, semiconducting carbon nitride nanotubes with intense photoluminescence emission and reproducible photoconductivity [J]. Nanoscale, 2012, 4(12): 3687-3692.
DOI: 10.1039/c2nr30777d
Google Scholar
[13]
Huang H, Remsen E E, Kowalewski T, et al. Nanocages derived from shell cross-linked micelle templates[J]. Journal of the American Chemical Society, 1999, 121(15): 3805-3806.
DOI: 10.1021/ja983610w
Google Scholar
[14]
Caruso F. Nanoengineering of particle surfaces[J]. Advanced Materials, 2001, 13(1): 11-22.
Google Scholar
[15]
Cao S, Low J, Yu J, et al. Polymeric photocatalysts based on graphitic carbon nitride[J]. Advanced Materials, 2015, 27(13): 2150-2176.
DOI: 10.1002/adma.201500033
Google Scholar
[16]
Sun J, Zhang J, Zhang M, et al. Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles[J]. Nature Communications, 2012: 1139.
Google Scholar
[17]
Zimmerman J L, Williams R, Khabashesku V N, et al. Synthesis of spherical carbon nitride nanostructures[J]. Nano Letters, 2001, 1(12): 731-734.
DOI: 10.1021/nl015626h
Google Scholar
[18]
Bai X, Li J, Cao C. Synthesis of hollow carbon nitride microspheres by an electrodeposition method[J]. Applied Surface Science, 2010, 256(8): 2327-2331.
DOI: 10.1016/j.apsusc.2009.10.061
Google Scholar
[19]
Dong F, Ou M, Jiang Y, et al. Efficient and durable visible light photocatalytic performance of porous carbon nitride nanosheets for air purification[J]. Industrial & Engineering Chemistry Research, 2014, 53(6): 2318-2330.
DOI: 10.1021/ie4038104
Google Scholar
[20]
Lotsch B V, Döblinger M, Sehnert J, et al. Unmasking Melon by a Complementary Approach Employing Electron Diffraction, Solid-State NMR Spectroscopy, and Theoretical Calculations—Structural Characterization of a Carbon Nitride Polymer[J]. Chemistry–A European Journal, 2007, 13(17): 4969-4980.
DOI: 10.1002/chem.200601759
Google Scholar
[21]
Bojdys M J, Müller J O, Antonietti M, et al. Ionothermal synthesis of crystalline, condensed, graphitic carbon nitride[J]. Chemistry–A European Journal, 2008, 14(27): 8177-8182.
DOI: 10.1002/chem.200800190
Google Scholar
[22]
Wang J, Jiang N. Blood compatibilities of carbon nitride film deposited on biomedical NiTi alloy[J]. Diamond and Related Materials, 2009, 18(10): 1321-1325.
DOI: 10.1016/j.diamond.2009.07.003
Google Scholar
[23]
Yu Y, Wang J. Direct microwave synthesis of graphitic C3N4 with improved visible-light photocatalytic activity[J]. Ceramics International, 2016, 42(3): 4063-4071.
DOI: 10.1016/j.ceramint.2015.11.078
Google Scholar
[24]
Niu P, Zhang L, Liu G, et al. Graphene-Like Carbon Nitride Nanosheets for Improved Photocatalytic Activities[J]. Advanced Functional Materials, 2012, 22(22): 4763-4770.
DOI: 10.1002/adfm.201200922
Google Scholar
[25]
Dai H, Gao X, Liu E, et al. Synthesis and characterization of graphitic carbon nitride sub-microspheres using microwave method under mild condition[J]. Diamond and Related Materials, 2013, 38: 109-117.
DOI: 10.1016/j.diamond.2013.06.012
Google Scholar
[26]
Li J, Cao C, Hao J, et al. Self-assembled one-dimensional carbon nitride architectures[J]. Diamond and related materials, 2006, 15(10): 1593-1600.
DOI: 10.1016/j.diamond.2006.01.013
Google Scholar
[27]
Zhao Y, Liu Z, Chu W, et al. Large-Scale Synthesis of Nitrogen-Rich Carbon Nitride Microfibers by Using Graphitic Carbon Nitride as Precursor[J]. Advanced Materials, 2008, 20(9): 1777-1781.
DOI: 10.1002/adma.200702230
Google Scholar