Fabrication of g-C3N4 Microspheres without Template via Microwave Heating Method

Article Preview

Abstract:

This research reported the preparation of the graphitic carbon nitride (g-C3N4) microspheres without template via microwave heating method using melamine as precursor. The as-synthesized samples were characterized by powder X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR), field-emission scanning electron microscopy (FE-SEM), ultraviolet-visible (UV-Vis) and photoluminescence (PL). Results showed that the g-C3N4 microspheres were successfully synthesized. The diameters of the microspheres range from 800 nm to 1.5 μm, and the shell thickness is about 50 nm. UV-Vis absorption edge and PL peak of the g-C3N4 were shown at 457 nm and 468 nm, respectively, indicating the intrinsic semiconductor-like absorption in the blue region of the visible spectrum. This was the first attempt to prepare g-C3N4 microspheres without template via microwave heating approach, which was proved to be facile and effective.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

284-288

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Liebig J. About some nitrogen compounds[J]. Ann. Pharm, 1834, 10(10).

Google Scholar

[2] Teter D M, Hemley R J. Low-compressibility carbon nitrides[J]. Science, 1996, 271(5245): 53.

DOI: 10.1126/science.271.5245.53

Google Scholar

[3] Thomas A, Fischer A, Goettmann F, et al. Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts[J]. Journal of Materials Chemistry, 2008, 18(41): 4893-4908.

DOI: 10.1039/b800274f

Google Scholar

[4] Wang X, Maeda K, Thomas A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature materials, 2009, 8(1): 76-80.

DOI: 10.1038/nmat2317

Google Scholar

[5] Yan S C, Li Z S, Zou Z G. Photodegradation performance of g-C3N4 fabricated by directly heating melamine[J]. Langmuir, 2009, 25(17): 10397-10401.

DOI: 10.1021/la900923z

Google Scholar

[6] Cheng N, Jiang P, Liu Q, et al. Graphitic carbon nitride nanosheets: one-step, high-yield synthesis and application for Cu2+ detection[J]. Analyst, 2014, 139(20): 5065-5068.

DOI: 10.1039/c4an00914b

Google Scholar

[7] Zhang X, Wang H, Wang H, et al. Single-Layered Graphitic-C3N4 Quantum Dots for Two-Photon Fluorescence Imaging of Cellular Nucleus[J]. Advanced Materials, 2014, 26(26): 4438-4443.

DOI: 10.1002/adma.201400111

Google Scholar

[8] Dong G, Zhang Y, Pan Q, et al. A fantastic graphitic carbon nitride (g-C3N4) material: electronic structure, photocatalytic and photoelectronic properties[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2014, 20: 33-50.

DOI: 10.1016/j.jphotochemrev.2014.04.002

Google Scholar

[9] Yu Y, Zhou Q, Wang J. The ultra-rapid synthesis of 2D graphitic carbon nitride nanosheets via direct microwave heating for field emission[J]. Chemical Communications, 2016, 52(16): 3396-3399.

DOI: 10.1039/c5cc10258h

Google Scholar

[10] Bai X, Cao C, Xu X. Formation and characterization of flower-like carbon nitride by pyrolysis of melamine[J]. Materials Science and Engineering: B, 2010, 175(2): 95-99.

DOI: 10.1016/j.mseb.2010.07.008

Google Scholar

[11] Yuan B, Chu Z, Li G, et al. Water-soluble ribbon-like graphitic carbon nitride (g-C3N4): green synthesis, self-assembly and unique optical properties[J]. Journal of Materials Chemistry C, 2014, 2(39): 8212-8215.

DOI: 10.1039/c4tc01421a

Google Scholar

[12] Gao J, Zhou Y, Li Z, et al. High-yield synthesis of millimetre-long, semiconducting carbon nitride nanotubes with intense photoluminescence emission and reproducible photoconductivity [J]. Nanoscale, 2012, 4(12): 3687-3692.

DOI: 10.1039/c2nr30777d

Google Scholar

[13] Huang H, Remsen E E, Kowalewski T, et al. Nanocages derived from shell cross-linked micelle templates[J]. Journal of the American Chemical Society, 1999, 121(15): 3805-3806.

DOI: 10.1021/ja983610w

Google Scholar

[14] Caruso F. Nanoengineering of particle surfaces[J]. Advanced Materials, 2001, 13(1): 11-22.

Google Scholar

[15] Cao S, Low J, Yu J, et al. Polymeric photocatalysts based on graphitic carbon nitride[J]. Advanced Materials, 2015, 27(13): 2150-2176.

DOI: 10.1002/adma.201500033

Google Scholar

[16] Sun J, Zhang J, Zhang M, et al. Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles[J]. Nature Communications, 2012: 1139.

Google Scholar

[17] Zimmerman J L, Williams R, Khabashesku V N, et al. Synthesis of spherical carbon nitride nanostructures[J]. Nano Letters, 2001, 1(12): 731-734.

DOI: 10.1021/nl015626h

Google Scholar

[18] Bai X, Li J, Cao C. Synthesis of hollow carbon nitride microspheres by an electrodeposition method[J]. Applied Surface Science, 2010, 256(8): 2327-2331.

DOI: 10.1016/j.apsusc.2009.10.061

Google Scholar

[19] Dong F, Ou M, Jiang Y, et al. Efficient and durable visible light photocatalytic performance of porous carbon nitride nanosheets for air purification[J]. Industrial & Engineering Chemistry Research, 2014, 53(6): 2318-2330.

DOI: 10.1021/ie4038104

Google Scholar

[20] Lotsch B V, Döblinger M, Sehnert J, et al. Unmasking Melon by a Complementary Approach Employing Electron Diffraction, Solid-State NMR Spectroscopy, and Theoretical Calculations—Structural Characterization of a Carbon Nitride Polymer[J]. Chemistry–A European Journal, 2007, 13(17): 4969-4980.

DOI: 10.1002/chem.200601759

Google Scholar

[21] Bojdys M J, Müller J O, Antonietti M, et al. Ionothermal synthesis of crystalline, condensed, graphitic carbon nitride[J]. Chemistry–A European Journal, 2008, 14(27): 8177-8182.

DOI: 10.1002/chem.200800190

Google Scholar

[22] Wang J, Jiang N. Blood compatibilities of carbon nitride film deposited on biomedical NiTi alloy[J]. Diamond and Related Materials, 2009, 18(10): 1321-1325.

DOI: 10.1016/j.diamond.2009.07.003

Google Scholar

[23] Yu Y, Wang J. Direct microwave synthesis of graphitic C3N4 with improved visible-light photocatalytic activity[J]. Ceramics International, 2016, 42(3): 4063-4071.

DOI: 10.1016/j.ceramint.2015.11.078

Google Scholar

[24] Niu P, Zhang L, Liu G, et al. Graphene-Like Carbon Nitride Nanosheets for Improved Photocatalytic Activities[J]. Advanced Functional Materials, 2012, 22(22): 4763-4770.

DOI: 10.1002/adfm.201200922

Google Scholar

[25] Dai H, Gao X, Liu E, et al. Synthesis and characterization of graphitic carbon nitride sub-microspheres using microwave method under mild condition[J]. Diamond and Related Materials, 2013, 38: 109-117.

DOI: 10.1016/j.diamond.2013.06.012

Google Scholar

[26] Li J, Cao C, Hao J, et al. Self-assembled one-dimensional carbon nitride architectures[J]. Diamond and related materials, 2006, 15(10): 1593-1600.

DOI: 10.1016/j.diamond.2006.01.013

Google Scholar

[27] Zhao Y, Liu Z, Chu W, et al. Large-Scale Synthesis of Nitrogen-Rich Carbon Nitride Microfibers by Using Graphitic Carbon Nitride as Precursor[J]. Advanced Materials, 2008, 20(9): 1777-1781.

DOI: 10.1002/adma.200702230

Google Scholar