Preparation and Optical Properties Research on Graphene Quantum Dots

Article Preview

Abstract:

In this work, graphene quantum dots were simply and rapidly prepared by thermal decomposition of citric acid. The resulting graphene quantum dots shows good dispersion and high crystallinity, the sizes can be effectively adjusted by controlling the temperature of decomposition. The results indicate that with the increase of temperature, the size of GQDs increased from 2 nm to 12 nm. The effect of the size of graphene quantum dots on the optical properties were carefully studied. Based on the optical properties and electrochemical results, the HOMO and LUMO value of GQDs with different sizes were obtained and the band gap becomes smaller from 3.36 eV to 2.87 eV with the increase of size of GQDs, which provides a potential application in the field of optoelectronic devices.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

303-308

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K.A. Ritter and J.W. Lyding: Nature Materials, Vol. 8 (2009), p.235.

Google Scholar

[2] S.N. Baker and , G.A. Baker: Angewandte Chemie International Edition, Vol. 49 (2010) No. 38, p.6726.

Google Scholar

[3] L.S. Li and X. Yan: Journal of Physical Chemistry Letters, Vol. 1 (2010) No. 17, p.2572.

Google Scholar

[4] R. Liu, D. Wu, X. Feng and K. Muellen: Journal of the American Chemical Society, Vol. 133 (2011) No. 39, p.15221.

Google Scholar

[5] Y. Wang, Y. Shao, D.W. Matson, J. Li and Y. Lin: ACS Nano, Vol. 4 (2010) No. 4, p.1790.

Google Scholar

[6] C. Li, S. Sahu, P. Anilkumar, C.E. Bunker, J. Xu, K.A. Shiral Fernando, P. Wang, E.A. Guliants, K.N. TackettII and Y.P. Sun: Journal of the American Chemical Society, Vol. 133 (2011) No. 13, p.4754.

Google Scholar

[7] M. Zheng, S. Liu, J. Li, D. Qu, H.F. Zhao, X.G. Guan, X.L. Hu, Z.G. Xie, X.B. Jing and Z.C. Sun: Advanced Materials, Vol. 26 (2014) No. 21, p.3554.

Google Scholar

[8] L Li, G. Wu, G. Yang, J. Peng, J. Zhao and J.J. Zhu: Nanoscale, Vol. 5 (2013), p.4015.

Google Scholar

[9] X. Yan, X. Cui, B. Li and L.S. Li: Nano Letters, Vol. 10 (2010) No. 5, p.1869.

Google Scholar

[10] V. Gupta, N. Chaudhary, R. Srivastava, G.D. Sharma, R. Bhardwaj and S. Chand: Journal of the American Chemical Society, Vol. 133 (2011) No. 26, p.9960.

Google Scholar

[11] D. Pan, J. Zhang, Z. Li and M. Wu: Advanced Materials, Vol. 22 (2010) No. 6, p.734.

Google Scholar

[12] J. Shen, Y. Zhu, X. Yang and C. Li: Chemical Communications, Vol. 48 (2012) , p.3686.

Google Scholar

[13] H.T. Li, X.D. He, Z.H. Kang, H. Huang, Y. Liu, J.L. Liu, S.Y. Lian, C.H.A. Tsang, X.B. Yang and S.T. Lee: Angewandte Chemie International Edition, Vol. 49 (2010) No. 26, p.4430.

DOI: 10.1002/anie.200906154

Google Scholar

[14] X. Yan, X. Cui and L.S. Li: Journal of the American Chemical Society, Vol. 132 (2010) No. 17, p.5944.

Google Scholar

[15] G. Eda, Y.Y. Lin, C. Mattevi, H. Yamaguchi, H.A. Chen, I.S. Chen, C.W. Chen, M. Chhowalla: Advanced Materials, Vol. 22 (2009) No. 4, p.505.

Google Scholar

[16] L.B. Biedermann, M.L. Bolen, M.A. Capano, D. Zemlyanov and R.G. Reifenberger: Physical Review B, Vol. 79 (2009) No. 12, p.125411.

Google Scholar

[17] L.B. Tang, R.B. Ji, X.K. Cao, J.Y. Lin, H.X. Jiang, X.M. Li, K.S. Teng, C.M. Luk, S. J Zeng, J.H. Hao and S.P. Lau: ACS Nano, Vol. 6 (2012), p.5102.

DOI: 10.1021/nn300760g

Google Scholar

[18] D.Y. Pan, L. Guo, J.C. Zhang, C. Xi, Q. Xu, H. Huang, J. H Li, Z.W. Zhang, W.J. Yu, Z.W. Chen, Z. Li and M.H. Wu: Journal of Materials Chemistry , Vol. 22 (2012), p.3314.

Google Scholar

[19] S. Kim, S.W. Hwang, M.K. Kim, D.Y. Shin, D.H. Shin, C.O. Kim, S. B. Yang, J. H. Park, E. Hwang, S. Choi, G. Ko, S. Sim, C. Sone, H.J. Choi, S. Bae and B.H. Hong: ACS Nano, Vol. 6 (2012) No. 9, p.8203.

DOI: 10.1021/nn302878r

Google Scholar

[20] D.Y. Pan, C. Xi, Z. Li, L. Wang, Z.W. Chen, B. Luc and M.H. Wu: Journal of Materials Chemistry A, Vol. 1 (2013), p.3551.

Google Scholar

[21] Y.P. Sun, B. Zhou, Y. Lin, W. Wang, K.A.S. Fernando, P. Pathak, M.J. Meziani , B.A. Harruff , X. Wang , H. Wang , P.G. Luo , H. Yang, M.E. Kose, B. Chen , L.M. Veca and S.Y. Xie: Journal of the American Chemical Society, Vol. 128 (2006).

DOI: 10.1021/ja062677d

Google Scholar

[22] X. Yan, X. Cui, B.S. Li and L.S. Li: Nano Letters, Vol. 10 (2010), p.1869.

Google Scholar

[23] H.Q. Shi, A.S. Barnard and I.K. Snook: The Journal of Chemical Physics, Vol. 15 (2013) No. 14, p.4897.

Google Scholar

[24] V. Gupta, N. Chaudhary, R. Srivastava, G.D. Sharma, R. Bhardwaj and S. Chand: Journal of the American Chemical Society, Vol. 133 (2011) No. 9, p.9960.

Google Scholar

[25] R.L. Liu, D.Q. Wu, X.L. Feng  and K. Müllen: Journal of the American Chemical Society, Vol. 133 (2011) No. 39, p.15221.

Google Scholar

[26] W.L. Wilson, P.F. Szajowski, L.E. Brus: Science, Vol. 262 (1993) No. 5137, p.1242.

Google Scholar