A Review - The Properties and Applications of Nano-Structured Titanium Oxide Materials

Article Preview

Abstract:

Because of the unique optical properties, titanium dioxide (TiO2) has been widely used as a white pigment over several decades. The numerous and diverse applications of TiO2 can be found in many common products such as paints, plastics, paper, sunscreens, etc. In the past decades, the emergence of nanotechnology and the discovery of some of the key application potentials of TiO2 have spurred the enormous interests to study TiO2, particularly, nano-structured TiO2, as the functional materials. Since then, substantial advances have been made in the fabrication, characterization, fundamental understanding of TiO2 nano-materials, and their promising applications in a number of areas such as energy and environment. This review will discuss the properties of nano-structured TiO2 and highlight the recent development of their applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

314-321

Citation:

Online since:

January 2017

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H.K. Buchel, H.H. Moretto and P. Woditsh: Industrial Inorganic Chemistry (Wiley-VCH, Weinheim, 2000).

Google Scholar

[2] R. Thompson: The Modern Inorganic Chemicals Industry (RSC, 1977).

Google Scholar

[3] Kirk-Othmer, Encyclopaedia of Chemical Technology (Wiley-Interscience publication, Fourth Edition, Volume 19, 1996).

Google Scholar

[4] A.C. Pierre and G.M. Pajonk: Chemical Reviews, Vol. 102 (2002), p.4243.

Google Scholar

[5] L.L. Hench and J.K. West: Chemical Reviews, Vol. 90 (1990), p.33.

Google Scholar

[6] P.J. Flory, L. Hench and D.R. Ulrich: Science of Ceramic Chemical Processing (Wiley: New York, 1986).

Google Scholar

[7] M. Lee, G. Lee, C. Ju and S. Hong: Solar Energy Materials and Solar Cells, Vol. 88 (2005), p.389.

Google Scholar

[8] P. Knauth and J. Schoonman: Nanostructured Materials: Selected Synthesis Methods, Properties and Applications, Kluwer Academic Publishers, (2004).

Google Scholar

[9] R.K. Wahi, Y. Liu, J.C. Falkner and V.L. Colvin: Journal of Colloid and Interface Science, Vol. 302 (2006), p.530.

Google Scholar

[10] G. Sivalingam, M.H. Priya and G. Madra: Applied Catalysts B: Environmental, Vol. 51 (2004), p.67.

Google Scholar

[11] D. Byun, B. Jin, J. Kim, J.K. Lee and D. Park: Journal of Hazardous Materials, Vol. 73 (2000), p.199.

Google Scholar

[12] T. Miyata, S. Tsukada and T. Minami: Thin Solid Films, Vol. 496 (2006), p.136.

Google Scholar

[13] X. Chen and S.S. Mao: Chemical Reviews, Vol. 107 (2007), p.2891.

Google Scholar

[14] A.L. Linsebigler, G. Lu and J.T. Yates: Chemical Reviews, Vol. 95 (1995), p.735.

Google Scholar

[15] U. Diebold: Surface Science Reports, Vol. 48 (2003), p.53.

Google Scholar

[16] Information on http: /chemtube3d. com/solidstate/_rutile(final). htm.

Google Scholar

[17] Information on http: /chemtube3d. com/solidstate/_anatase(final). htm.

Google Scholar

[18] N. Daneshvar, D. Salari and A.R. Khataee: Journal of Photochemistry and Photobiology A: Chemistry, Vol. 157 (2003), p.111.

Google Scholar

[19] N. Daneshvar, D. Salari, A. Niaie and M.H. Rasoulifard: Journal of Environmental Science and Health, Part A, Vol. 40 (2005), p.1605.

Google Scholar

[20] N. Daneshvar, A. Aleboyeh and A.R. Khataee: Chemosphere, Vol. 59 (2005), p.761.

Google Scholar

[21] V. Loddo, G. Marco, C. Marto, L. Palmisano, V. Rives, and A. Sclafania: Applied Catalysis B: Environmental, Vol. 58 (2005), p.253.

Google Scholar

[22] S. Bakardjieva, J. Subrt, V. Stengl, M. Dianez and M. Sayagues: Applies Catalysis B: Environment, Vol. 58 (2005), p.193.

Google Scholar

[23] K.I. Hadjiivanov and D. G. Klissurski: Chem. Soc. Rev., Vol. 25 (1996), p.61.

Google Scholar

[24] M. Grätzel: Journal of Photochemistry and Photobiology A: Chemistry, Vol. 164 (2004), p.3.

Google Scholar

[25] M. Ni, M. Leung and K. Sumathy: Renewable and Sustainable Energy Reviews, Vol. 11 (2007), p.401.

Google Scholar

[26] A. Fujishima, T.N. Rao and D.A. Tryk: Journal of Photochemistry and Photobiology C: Photochemistry Reviews, Vol. 1 (2000), p.750.

Google Scholar

[27] J. Cheon, J. Seo, H. Chung, M. Kim, J. Lee and I. Choi: Small, Vol. 3 (2007), p.850.

Google Scholar

[28] M. Grätzel: Nature, Vol. 414 (2001), 338.

Google Scholar

[29] B. O'Regan and M. Grätzel: Nature, Vol. 353 (1991), p.737.

Google Scholar

[30] Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide and L. Han: Jpn. J. Appl. Phys., Vol. 45 (2006), p.638.

Google Scholar

[31] Q. Yu, Y. Wang, Z. Yi, N. Zu, J. Zhang, M. Zhang and P. Wang: ACS Nano., Vol. 4 (2010), p.6032.

Google Scholar

[32] G. Smestad, C. Bignozzi and R. Argazzi: Solar Energy Materials and Solar Cells, Vol. 32 (1994), p.259.

DOI: 10.1016/0927-0248(94)90263-1

Google Scholar

[33] A. Kay and M. Grätzel: Solar Energy Materials and Solar Cells, Vol. 44(1996), p.99.

Google Scholar

[34] A. Hagfeldt and M. Grätzel:  Acc. Chem. Res., Vol. 33(2000), p.269.

Google Scholar

[35] M.K. Nazeeruddin, F. De Angelis, S. Fantacci , A. Selloni , G. Viscardi, P. Liska, S. Ito, B. Takeru and M. Grätzel: J. Am. Chem. Soc., Vol. 127 (2005), p.16835.

DOI: 10.1021/ja052467l

Google Scholar

[36] Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, and L. Han: Jpn. J. Appl. Phys., Vol. 45 (2006), p.638.

Google Scholar

[37] Y. Cao, Y. Bai, Q. Yu, Y. Cheng, S. Liu, D. Shi, F. Gao and P. Wang: J. Phys. Chem. C. Vol. 113 (2009), p.6290.

Google Scholar

[38] H.S. Kim, H.S. Kim, C. R. Lee, J.H. Im, K.B. Lee, T. Moehl, A. Marchioro, S.J. Moon, B.R. Humphry, J H. Yum , J.E. Moser, M. Grätzel and N.G. Park: Sci. Rep., Vol. 2 (2012), p.591.

DOI: 10.1038/srep00591

Google Scholar

[39] J.H. Heo, et al: The Nature Photonics, Vol. 7 (2013), p.486.

Google Scholar

[40] J. Burschka, J. Burschka, N. Pellet, S. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin and M: Grätzel: Nature, Vol. 499 (2013), p.316.

DOI: 10.1038/nature12340

Google Scholar

[41] M.A. Green, A. Ho-Baillie1 and H.J. Snaith: The Nature Photonics, Vol. 8 (2014), p.506.

Google Scholar

[42] A. Fujishima and K. Honda: Nature, Vol. 238 (1972), p.37.

Google Scholar

[43] A. Fujishima, T.N. Rao and D.A. Tryk: Journal of Photochemistry and Photobiology. C, Vol. 1 (2000), p.1.

Google Scholar

[44] D.A. Tryk, A. Fujishima and Honda: Electrochim. Acta, Vol. 45 (2000), p.2362.

Google Scholar

[45] A.J. Bard, J.H. Park and S. Kim: Nano Letter, Vol. 6 (2006) No. 1, p.24.

Google Scholar

[46] D. Beydoun, D.R. Amal, G. Low, and S. McEvoy: Journal of Nanoparticles Research, Vol. 1 (1999) No. 4, p.439.

Google Scholar

[47] A. Henglein: Chemical Reviews, Vol. 89 (1989) No. 8, p.1861.

Google Scholar

[48] R. Wang: Advanced Materials, Vol. 10 (1998) No. 2, p.135.

Google Scholar

[49] K. Guan: Surface and Coating Technology, Vol. 191 (2005), p.155.

Google Scholar

[50] A. Fujishima and A.X. Zhang: Comptes Rendus Chimie, Vol. 9 (2006), p.750.

Google Scholar

[51] Q. Cheng, C. Li, V. Pavlinek, P. Saha and H. Wang: Applied Surface Science, Vol. 252 (2006), p.4154.

Google Scholar

[52] C.C. Trapalis, P. Keivanidis, G. Kordas, M, Zaharescu, M. Crisan, A. Szatvanyi and M. Gartner: Thin Solid Films, Vol. 433 (2003), p.186.

DOI: 10.1016/s0040-6090(03)00331-6

Google Scholar

[53] H.J. Zhang and D. Z Wen: Surface & Coating Technology, Vol. 201 (2007), p.5720.

Google Scholar

[54] T. Yuranova, D. Laub and J. Kiwi: Catalysis Today, Vol. 122 (2007), p.109.

Google Scholar

[55] A. Mills, A. Lepre, N. Elliott, S. Bhopal, S.A. Parkin and S.A. O'Neill: Journal of Photochemistry and Photobiology A: Chemistry, Vol. 160 (2003), p.213.

DOI: 10.1016/s1010-6030(03)00205-3

Google Scholar

[56] T. Kallio, S. Alajoki, V. Pore, M. Ritala, J. Laine, M. Leskela and P. Stenius: Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 291 (2006), p.162.

DOI: 10.1016/j.colsurfa.2006.06.044

Google Scholar

[57] M. Piranniemi and M. Sillanpaa: Chemosphere, Vol. 48 (2002), p.1047.

Google Scholar

[58] O. Carp, C. L Huisman and A. Reller: Prog. Solid State Chem., Vol. 32 (2004), p.33.

Google Scholar

[59] Y. Wang, Y. Huang, W. Ho, L. Zhang, Z. Zou and S. Lee: Journal of Hazardous Materials, Vol. 169 (2009), p.77.

Google Scholar

[60] S.N. Frank and A.J. Bard: Journal of the American Chemical Society, Vol. 99 (1977), p.303.

Google Scholar

[61] S.N. Frank and A.J. Bard: Journal of Physical Chemistry, Vol. 81 (1977), p.1484.

Google Scholar

[62] M.R. Hoffmann, S.T. Martin, W. Choi, and D.W. Bahnemann: Chemical Reviews, Vol. 95 (1995), p.69.

Google Scholar

[63] I.K. Konstantinou and T. A. Albanis: Appl. Catal. B, Vol. 49 (2004), p.1.

Google Scholar

[64] R. Molinari, F. Pirillo, V. Loddo and L. Palmisano: Catal. Today, Vol. 118 (2006), p.205.

Google Scholar

[65] L. Li, P. Zhu, P. Zhang, Z. Chen and W. Han: Water Research, Vol. 37 (2003) No. 15, p.3646.

Google Scholar

[66] W. Fu, H. Yang, L. Chang, H. Bala, M. Li, and G. Zou: Colloids and Surfaces A: Physicochemical Engineering Aspects, Vol. 289 (2006), p.47.

DOI: 10.1016/j.colsurfa.2006.04.013

Google Scholar

[67] A.A. Ismail and D. W. Bahnemann: J. Mater. Chem. Vol. 21 (2011), p.11686.

Google Scholar

[68] A. Di Paola, E. Carcia-Lopez, E. Marci and L. Palmisano: Journal of Hazardous Materials, Vol. 211-212 (2012), p.3.

Google Scholar

[69] A. Fujishima, X. Zhang and D.A. Tryk: Surface Science Reports, Vol. 63 (2008), p.515.

Google Scholar

[70] A.V. Emeline, V.N. Kuznetsov, V.K. Rybchuk, and N. Serpone: International Journal of Photoenergy, Volume 2008 (2008), Article ID 258394, 19 pages.

Google Scholar

[71] H. Irie, Y. Watanabe and K. Hashimoto: Chemistry Letters, Vol. 32 (2003), p.772.

Google Scholar

[72] S. Sakthivel and H. Kisch: Angewandte Chemie International Edition, Vol. 42 (2003), p.4908.

Google Scholar

[73] T. Morikawa, R. Asahi, T. Ohwaki, K. Aoki and Y. Taga: Japanese Journal of Applied Physics, Vol. 40, part 2 (2001), 6A.

Google Scholar

[74] A. Primo, A. Corma and H. Garcia: Physical Chemistry Chemical. Physics, Vol. 13 (2011), p.886.

Google Scholar