Glutathione-Directed Green Synthesis of Ag Nanoclusters with Highly Fluorescence

Article Preview

Abstract:

A facile green method to synthesize fluorescent Ag nanoclusters (NCs) has been developed by employing glutathione (GSH) as capping agent as well as reducing agent. The fluorescent nanocomposites powder possesses strong emission and excellent stability. By changing the mole ratios of glutathione to silver precursor, nanoclusters with different emissions are obtained. The as-synthesized GSH-Ag nanocomposite is well characterized by fluorescence spectroscopy, HRTEM, XPS, and IR spectroscopy. The green synthesis procedure has also been used to synthesize fluorescent GSH-Au nanoclusters with good success.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

297-302

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z.A. Peng and X. Peng: J. Am. Chem. Soc., Vol. 123 (2001) No. 1, p.183.

Google Scholar

[2] L. Qu and X. Peng: J. Am. Chem. Soc., Vol. 124 (2002) No. 9, p. (2049).

Google Scholar

[3] H. Y. Xie, C. Zuo, Y. Liu, Z.L. Zhang, D.W. Pang, X.L. Li, J.P. Gong, C. Dickinson, and W. Zhou: Small, Vol. 1 (2005) No. 5, p.506.

Google Scholar

[4] G. P. Wang, E.Q. Song, H.Y. Xie, Z.L. Zhang, Z.Q. Tian, C. Zuo, D.W. Pang, D.C. Wu and Y.B. Shi: Chem. Commun., (2005) No. 34, p.4276.

Google Scholar

[5] N. Gaponik, I.L. Radtchenko, G.B. Sukhorukov, H. Weller and A.L. Rogach: Adv. Mater., Vol. 14 (2002) No. 12, p.879.

DOI: 10.1002/1521-4095(20020618)14:12<879::aid-adma879>3.0.co;2-a

Google Scholar

[6] Y. Yang, Z. Wen, Y. Dong, M. Gao: Small, Vol. 2 (2006) No. 7, p.898.

Google Scholar

[7] N. Gaponik, D.V. Talapin, A.L. Rogach, K. Hoppe, E.V. Shevchenko, A. Kornowski, A. Eychmüller and H. Weller: J. Phys. Chem. B, Vol. 106 (2002) No. 29, p.7177.

DOI: 10.1021/jp025541k

Google Scholar

[8] Y. Yang and M.Y. Gao: Adv. Mater., Vol. 17 (2005) No. 19, p.2354.

Google Scholar

[9] W.C.W. Chan and S.M. Nie: Science, Vol. 281 (1998) No. 5385, p. (2016).

Google Scholar

[10] M. Bruchez Jr., M. Moronne, P. Gin, S. Weiss and A.P. Alivisatos: Science, Vol. 281 (1998) No. 5385, p. (2013).

DOI: 10.1126/science.281.5385.2013

Google Scholar

[11] D.R. Larson, W.R. Zipfel, R.M. Williams, S.W. Clark, M.P. Bruchez, F.W. Wise and W.W. Webb: Science, Vol. 300 (2003) No. 5624, p.1434.

DOI: 10.1126/science.1083780

Google Scholar

[12] M. Han, X. Gao, J.Z. Su, and S. Nie: Nature Biotech., Vol. 19 (2001) No. 7, p.631.

Google Scholar

[13] M. Stroh, J.P. Zimmer, D.G. Duda, T.S. Levchenko, K.S. Cohen, E.B. Brown, D.T. Scadden, V.P. Torchilin, M.G. Bawendi, D. Fukumura and R.K. Jain: Nat. Med., Vol. 11 (2005) No. 6, p.678.

DOI: 10.1038/nm1247

Google Scholar

[14] E.R. Goldman, G.P. Anderson, P.T. Tran, H. Mattoussi, P.T. Charles and J.M. Mauro: Anal Chem., Vol. 74 (2001) No. 4, p.841.

Google Scholar

[15] A.Y. Nazzal, L. Qu, X. Peng, and M. Xiao: Nano. Lett., Vol. 3 (2003) No. 6, p.819.

Google Scholar

[16] T.S. Hauck, R.E. Anderson, H.C. Fischer, S. Newbigging, and W.C.W. Chan: Small, Vol. 6 (2010) No. 1, p.138.

Google Scholar

[17] B.A. Rzigalinski and J.S. Strobl. Toxicol: Appl. Pharmacol., Vol. 238 (2009) No. 3, p.280.

Google Scholar

[18] J. Zheng, J.T. Petty and R.M. Dickson: J. Am. Chem. Soc., Vol. 125 (2003) No. 26, p.7780.

Google Scholar

[19] J. Xie, Y. Zheng and J.Y. Ying: J. Am. Chem. Soc., Vol. 131 (2009) No. 3, p.888.

Google Scholar

[20] I. Rabin, W. Schulze, G. Ertl, C. Felix, C. Sieber, W. Harbich and J. Buttet: Chem. Phy. Lett., Vol. 320 (2000) No. 1-2, p.59.

DOI: 10.1016/s0009-2614(00)00211-6

Google Scholar

[21] C. Félix, C. Sieber, W. Harbich, J. Buttet, I. Rabin, W. Schulze, and G. Ertl: Chem. Phy. Lett., Vol. 313 (1999) No. 1-2, p.105.

DOI: 10.1016/s0009-2614(99)01034-9

Google Scholar

[22] C. Félix, C. Sieber, W. Harbich, J. Buttet, I. Rabin, W. Schulze, and G. Ertl: Phys. Rev. Lett., Vol. 86 (2001) No. 14, p.2992.

DOI: 10.1103/physrevlett.86.2992

Google Scholar

[23] L. Maretti, P.S. Billone, Y. Liu and J.C. Scaiano: J. Am. Chem. Soc., Vol. 131 (2009) No. 39, p.13972.

Google Scholar

[24] B. Baruwati, V. Polshettiwar and R.S. Varma: Green Chem., Vol. 11 (2009) No. 7, p.926.

Google Scholar

[25] X.S. Kou, S.Z. Zhang, Z. Yang, C.K. Tsung, G.D. Studky, L.D. Sun, J.F. Wang and C.H. Yan: J. Am. Chem. Soc., Vol. 129 (2007) No. 20, p.6402.

Google Scholar

[26] Y. Shichibu, Y. Negishi, H. Tsunoyama, M. Kanehara, T. Teranishi and T. Tsukuda: Small, Vol. 3 (2007) No. 5, p.835.

DOI: 10.1002/smll.200600611

Google Scholar

[27] J.M. Slocik, and D.W. Wright: Biomacromolecules, Vol. 4 (2003) No. 5, p.1135.

Google Scholar

[28] C. Barglik-Chory, C. Remenyi, H. Strohm, and G. Müller: J. Phys. Chem. B, Vol. 108 (2004) No. 23, p.7637.

Google Scholar

[29] H.F. Qian, C.Q. Dong, J.F. Weng, and J.C. Ren: Small, Vol. 2 (2006) No. 6, p.747.

Google Scholar

[30] Y.G. Zheng, Z.C. Yang, and J.Y. Ying: Adv. Mater., Vol. 19 (2007) No. 11, p.1475.

Google Scholar

[31] H. Li, Z. Cui and C. Han.: Sens. Actuators B, Vol. 143 (2009) No. 1, p.87.

Google Scholar

[32] I.I.S. Lim, D. Mott, W. Ip, P. N. Njoki, Y. Pan, S. Zhou: Langmuir, Vol. 24 (2008) No. 16, p.8857.

Google Scholar

[33] S. Chen, H. Yao and K. Kimura: Langmuir, Vol. 17 (2001) No. 3, p.733.

Google Scholar

[34] P.K. Sudeep, S.T.S. Joseph and K.G. Thomas: J. Am. Chem. Soc., Vol. 127(2005) No. 18, p.6516.

Google Scholar

[35] A. Chompoosor, G. Han, and V.M. Rotello: Bioconjugate Chem., Vol. 19 (2008) No. 7, p.1342.

Google Scholar

[36] E. Stathatos and P. Lianos: Langmuir, Vol. 16 (2000) No. 5, p.2398.

Google Scholar

[37] Y.C. Liu, T.C. Chuang: J. Phys. Chem. B, Vol. 107 (2003) No. 45, p.12383.

Google Scholar