[1]
M. Zong, Y. Huang, N. Zhang, et al, Influence of (RGO)/(ferrite) ratios and graphene reduction degree on microwave absorption properties of graphene composite, J. Alloys. Compd. 664 (2015) 491-501.
DOI: 10.1016/j.jallcom.2015.05.073
Google Scholar
[2]
T.H. Ting, K.H. Wu, Synthesis, characterization of polyaniline / BaFe12O19 composites with microwave-absorbing properties, J. Magn. Magn. Mater. 322 (2010) 2160-2166.
DOI: 10.1016/j.jmmm.2010.02.002
Google Scholar
[3]
G.L. Wu, Y.H. Cheng, Y.Y. Ren et al, Synthesis and characterization of γ-Fe2O3@C nanorod-carbon sphere composite and its application as microwave absorbing material, J. Alloys. Compd. 653 (2015) 346-350.
DOI: 10.1016/j.jallcom.2015.08.236
Google Scholar
[4]
H.Y. Wang, D.M. Zhu, W.C. Zhou et al, Synthesis and micowave absorbing properties of Ni-Cu ferrite / MWCNTs composites, J Mater Sci: Mater Electron. 26 (2015) 7698-7704.
DOI: 10.1007/s10854-015-3411-7
Google Scholar
[5]
S.R. Janasi, M. Emura, F.J.G. Landgraf et al, The effects of synthesis variables on the magnetic properties of coprecipitated barium ferrite powders, J. Magn. Magn. Mater. 238 (2002) 168-172.
DOI: 10.1016/s0304-8853(01)00857-5
Google Scholar
[6]
J.J. Xu, H.F. Zou, H.Y. Li, Influence of Nd3+ substitution on the microstructure and electromagnetic properties of barium W-type hexaferrite, J. Alloys Compd. 490 (2010) 552-556.
DOI: 10.1016/j.jallcom.2009.10.079
Google Scholar
[7]
M.G. Rai, M.A. Iqbal, K.T. Kubra, Effect of Ho3+ substitutions on the structural and magnetic properties of BaFe12O19 Hexaferrites, J. Alloys Compd. 495 (2010) 229-233.
DOI: 10.1016/j.jallcom.2010.01.133
Google Scholar
[8]
M.A. Ahmed, N. Okasha, M. M. El-Sayed, Enhancement of the physical properties of rare-earth-substituted Mn-Zn ferrites prepared by flash method, Ceram. Int. 33 (2007) 49-58.
DOI: 10.1016/j.ceramint.2005.07.014
Google Scholar
[9]
M.J. Iqbal, S. Farooq, Effect of doping of divalent and trivalent metal ions on the structural and electrical properties of magnesium aluminate, Mater. Sci. Eng. B. 505 (2007) 140-147.
DOI: 10.1016/j.mseb.2006.09.009
Google Scholar
[10]
M.A. Ahmed, N. Okash, R.M. Kershi, Extraordinary role of rare-earth elements on the transport properties of barium W-type hexaferrite Mater, Mater Chem Phys. 113 (2009) 196-201.
DOI: 10.1016/j.matchemphys.2008.07.032
Google Scholar
[11]
Z.H. Hua, S.Z. Li, Z.D. Han et al, The effect of La-Zn substitution on the microstructure and magnetic properties of barium ferrites, Mat. Sci. Eng. A. 448 ( 2007) 326-329.
DOI: 10.1016/j.msea.2006.11.153
Google Scholar
[12]
G.H. Mu, X.F. Pan, N. Chen et al, Synthesis and characterization of hard magnetic composites-Hollow microsphere / titania / barium ferrite, Appl Surf Sci. 254 (2008) 2483-2486.
DOI: 10.1016/j.apsusc.2007.09.076
Google Scholar
[13]
S.G. Kim, W.N. Wang, T. Iwaki et al, Low-temperature crystallization of barium ferrite nanoparticles by a sodium citrate-aided synthetic process, J. Phys. Chem. C. 111 (2007) 10175-10180.
DOI: 10.1021/jp068249b
Google Scholar
[14]
X. Tang, Y.G. Yang, Surface modification of M-Ba-ferrite powders by polyaniline: Towards improving microwave electromagnetic response, Appl Surf Sci. 255 (2009) 9381-9385.
DOI: 10.1016/j.apsusc.2009.07.040
Google Scholar
[15]
S. Ounnunkad, P. Winota, S. Phanichphant, Cation distribution and magnetic behavior of Mg1-x Zn x Fe2O4 ceramics monitored by Mössbauer Spectroscopy, J Electroceram. 16 (2006) 363-368.
DOI: 10.1007/s10832-006-9880-6
Google Scholar
[16]
M.A. Ahmed, N. Okash, R.M. Kershi, Influence of rare-earth ions on the structure and magnetic properties of barium W-type hexaferrite, J. Magn. Magn. Mater. 320 (2008) 1146-1150.
DOI: 10.1016/j.jmmm.2007.11.014
Google Scholar
[17]
C.A. Stergiou, I. Manolakis, T.V. Yioultsis et al, Dielectric and magnetic properties of new rare-earth substituted Ba-hexaferrites in the 2-18 GHz frequency range, J. Magn. Magn. Mater. 322 (2010) 1532-1535.
DOI: 10.1016/j.jmmm.2009.07.082
Google Scholar
[18]
S. Ounnunkad, Improving magnetic properties of barium hexaferrites by La or Pr substitution, Solid. State. Commun. 138 (2006) 472-475.
DOI: 10.1016/j.ssc.2006.03.020
Google Scholar
[19]
H. Mocuta, L. Lechevallier, J.M. Le Breton, Structural and magnetic properties of hydrothermally synthesised Sr1−xNdxFe12O19 hexagonal ferrites, J. Alloys. Compd. 364 (2004) 48-52.
DOI: 10.1016/s0925-8388(03)00545-0
Google Scholar
[20]
J.F. Wang, C.B. Ponton, R. Grössinger et al, A study of La-substituted strontium hexaferrite by hydrothermal synthesis, J. Alloys Compd. 369 (2004) 170-177.
DOI: 10.1016/j.jallcom.2003.09.097
Google Scholar
[21]
L. Lechevallier, J.M. Le Breton, J.F. Wang et al, Structural analysis of hydrothermally synthesized Sr1−xSmxFe12O19 hexagonal ferrites, J. Magn. Magn. Mater. 269 (2004) 192-196.
DOI: 10.1016/s0304-8853(03)00591-2
Google Scholar
[22]
X.S. Liu, W. Zhong, S. Yang et al, Influences of La3+ substitution on the structure and magnetic properties of M-type strontium ferrites, J. Magn. Magn. Mater. 238 (2002) 207-214.
DOI: 10.1016/s0304-8853(01)00914-3
Google Scholar
[23]
J.F. Wang, C.B. Ponton, I.R. Harris, A study of Sm-substituted SrM magnets sintered using hydrothermally synthesised powders, J. Magn. Magn. Mater. 298 (2006) 122-131.
DOI: 10.1016/j.jmmm.2005.03.012
Google Scholar
[24]
X. Liu, W. Zhong, S. Yang et al, Structure and Magnetic Properties of La3+-Substituted Strontium Hexaferrite Particles Prepared by Sol-Gel Method, Phys. Status Solid A. 193 (2002) 314-319.
DOI: 10.1002/1521-396x(200209)193:2<314::aid-pssa314>3.0.co;2-w
Google Scholar
[25]
M. M. Rashad, I. A. Ibrahim, A novel approach for synthesis of M-type hexaferrites nanopowders via the co-precipitation method, J Mater Sci: Mater Electron. 22 (2011) 1796-1803.
DOI: 10.1007/s10854-011-0365-2
Google Scholar
[26]
H. Ovalioglu, H. Sozerib, M. Kabaera et al, Magnetic properties of nano-crystalline barium ferrite synthesized by different synthesis route, Acta. Phys. Pol A. 118 (2010) 1020-1021.
DOI: 10.12693/aphyspola.118.1020
Google Scholar
[27]
Y.X. Li, H.W. Zhang, Y.L. Liu et al, Synthesis and electro-magnetic properties of polyaniline-barium ferrite nanocomposite, Chinese J. Chem. Phys. 20 (2007) 739-742.
DOI: 10.1088/1674-0068/20/06/739-742
Google Scholar
[28]
A. Mali, A. Ataie, Structural characterization of nano-crystalline BaFe12O19 powders synthesized by sol-gel combustion route, Scripta. Mater. 53 (2005) 1065-1070.
DOI: 10.1016/j.scriptamat.2005.06.037
Google Scholar
[29]
Y.P. Fu, C.H. Lin, K.Y. Pan, Barium ferrite powders prepared by microwave-induced combustion process and some of their properties, J. Alloys. Compd. 364 (2004) 221-224.
DOI: 10.1016/s0925-8388(03)00501-2
Google Scholar
[30]
J. Jiang, L.H. Ai, D.B. Qin et al, Preparation and characterization of electromagnetic functionalized polyaniline / BaFe12O19 composites, Syn. Met. 159 (2009) 695-699.
DOI: 10.1016/j.synthmet.2008.12.021
Google Scholar
[31]
C.R. Zhang, Q.L. Li, Y. Ye, Preparation and characterization of polypyrrole / nano-SrFe12O19 composites by in situ polymerization method, Syn. Met. 159 ( 2009) 1008-1013.
DOI: 10.1016/j.synthmet.2009.01.013
Google Scholar
[32]
C.J. Li, B. Wang, J.N. Wang. Magnetic and microwave absorbing properties of electrospun Ba(1-x)LaxFe12O19 nanofibers, J. Magn. Magn. Mater. 324 (2012) 1305-1311.
DOI: 10.1016/j.jmmm.2011.11.016
Google Scholar
[33]
Y. Xie, X.W. Hong, Y.H. Gao et al, Synthesis and characterization of La / Nd-doped barium-ferrite / polypyrrole nanocomposites, Synth. Met. 162 (2012) 677-681.
DOI: 10.1016/j.synthmet.2012.02.023
Google Scholar
[34]
D.A. Makeiff, T. Huber, Microwave absorption by polyaniline–carbon nanotube composites, Synth. Met. 156 (2006) 497-500.
DOI: 10.1016/j.synthmet.2005.05.019
Google Scholar