Synthesis, Characterization and Properties of PANI/(La-Nd Doped BaFe12O19) Composites

Article Preview

Abstract:

La-Nd co-doped barium hexaferrites, Ba0.7(LamNdn)0.3Fe12O19 (D-BaM), were successfully prepared by sol-gel method. PANI / D-BaM composites were synthesized by in-situ polymerization in solution. The structure, morphology and properties of samples have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), vibrating sample magnetometer (VSM), four-probe conductivity tester and vector network analyzer. The XRD patterns showed that the crystal structure of all the samples exist as M-type phases. The SEM images revealed that the particles presented a hexagonal platelet-like morphology. The magnetic properties could be improved by substitutions of La and Nd ions. The saturation magnetization (Ms) and coercive force (Hc) increased with the change of La / Nd ratio to the maximum at La / Nd = 3:1. The doped particles have also been embedded in conductive PANI to prepare electromagnetic materials, and the conductivity kept on the order of 10-2. The microwave absorbing properties of composites at 30 MHz-6 GHz improved obviously, the peak value of reflection loss could reach-7.5 dB.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

327-334

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Zong, Y. Huang, N. Zhang, et al, Influence of (RGO)/(ferrite) ratios and graphene reduction degree on microwave absorption properties of graphene composite, J. Alloys. Compd. 664 (2015) 491-501.

DOI: 10.1016/j.jallcom.2015.05.073

Google Scholar

[2] T.H. Ting, K.H. Wu, Synthesis, characterization of polyaniline / BaFe12O19 composites with microwave-absorbing properties, J. Magn. Magn. Mater. 322 (2010) 2160-2166.

DOI: 10.1016/j.jmmm.2010.02.002

Google Scholar

[3] G.L. Wu, Y.H. Cheng, Y.Y. Ren et al, Synthesis and characterization of γ-Fe2O3@C nanorod-carbon sphere composite and its application as microwave absorbing material, J. Alloys. Compd. 653 (2015) 346-350.

DOI: 10.1016/j.jallcom.2015.08.236

Google Scholar

[4] H.Y. Wang, D.M. Zhu, W.C. Zhou et al, Synthesis and micowave absorbing properties of Ni-Cu ferrite / MWCNTs composites, J Mater Sci: Mater Electron. 26 (2015) 7698-7704.

DOI: 10.1007/s10854-015-3411-7

Google Scholar

[5] S.R. Janasi, M. Emura, F.J.G. Landgraf et al, The effects of synthesis variables on the magnetic properties of coprecipitated barium ferrite powders, J. Magn. Magn. Mater. 238 (2002) 168-172.

DOI: 10.1016/s0304-8853(01)00857-5

Google Scholar

[6] J.J. Xu, H.F. Zou, H.Y. Li, Influence of Nd3+ substitution on the microstructure and electromagnetic properties of barium W-type hexaferrite, J. Alloys Compd. 490 (2010) 552-556.

DOI: 10.1016/j.jallcom.2009.10.079

Google Scholar

[7] M.G. Rai, M.A. Iqbal, K.T. Kubra, Effect of Ho3+ substitutions on the structural and magnetic properties of BaFe12O19 Hexaferrites, J. Alloys Compd. 495 (2010) 229-233.

DOI: 10.1016/j.jallcom.2010.01.133

Google Scholar

[8] M.A. Ahmed, N. Okasha, M. M. El-Sayed, Enhancement of the physical properties of rare-earth-substituted Mn-Zn ferrites prepared by flash method, Ceram. Int. 33 (2007) 49-58.

DOI: 10.1016/j.ceramint.2005.07.014

Google Scholar

[9] M.J. Iqbal, S. Farooq, Effect of doping of divalent and trivalent metal ions on the structural and electrical properties of magnesium aluminate, Mater. Sci. Eng. B. 505 (2007) 140-147.

DOI: 10.1016/j.mseb.2006.09.009

Google Scholar

[10] M.A. Ahmed, N. Okash, R.M. Kershi, Extraordinary role of rare-earth elements on the transport properties of barium W-type hexaferrite Mater, Mater Chem Phys. 113 (2009) 196-201.

DOI: 10.1016/j.matchemphys.2008.07.032

Google Scholar

[11] Z.H. Hua, S.Z. Li, Z.D. Han et al, The effect of La-Zn substitution on the microstructure and magnetic properties of barium ferrites, Mat. Sci. Eng. A. 448 ( 2007) 326-329.

DOI: 10.1016/j.msea.2006.11.153

Google Scholar

[12] G.H. Mu, X.F. Pan, N. Chen et al, Synthesis and characterization of hard magnetic composites-Hollow microsphere / titania / barium ferrite, Appl Surf Sci. 254 (2008) 2483-2486.

DOI: 10.1016/j.apsusc.2007.09.076

Google Scholar

[13] S.G. Kim, W.N. Wang, T. Iwaki et al, Low-temperature crystallization of barium ferrite nanoparticles by a sodium citrate-aided synthetic process, J. Phys. Chem. C. 111 (2007) 10175-10180.

DOI: 10.1021/jp068249b

Google Scholar

[14] X. Tang, Y.G. Yang, Surface modification of M-Ba-ferrite powders by polyaniline: Towards improving microwave electromagnetic response, Appl Surf Sci. 255 (2009) 9381-9385.

DOI: 10.1016/j.apsusc.2009.07.040

Google Scholar

[15] S. Ounnunkad, P. Winota, S. Phanichphant, Cation distribution and magnetic behavior of Mg1-x Zn x Fe2O4 ceramics monitored by Mössbauer Spectroscopy, J Electroceram. 16 (2006) 363-368.

DOI: 10.1007/s10832-006-9880-6

Google Scholar

[16] M.A. Ahmed, N. Okash, R.M. Kershi, Influence of rare-earth ions on the structure and magnetic properties of barium W-type hexaferrite, J. Magn. Magn. Mater. 320 (2008) 1146-1150.

DOI: 10.1016/j.jmmm.2007.11.014

Google Scholar

[17] C.A. Stergiou, I. Manolakis, T.V. Yioultsis et al, Dielectric and magnetic properties of new rare-earth substituted Ba-hexaferrites in the 2-18 GHz frequency range, J. Magn. Magn. Mater. 322 (2010) 1532-1535.

DOI: 10.1016/j.jmmm.2009.07.082

Google Scholar

[18] S. Ounnunkad, Improving magnetic properties of barium hexaferrites by La or Pr substitution, Solid. State. Commun. 138 (2006) 472-475.

DOI: 10.1016/j.ssc.2006.03.020

Google Scholar

[19] H. Mocuta, L. Lechevallier, J.M. Le Breton, Structural and magnetic properties of hydrothermally synthesised Sr1−xNdxFe12O19 hexagonal ferrites, J. Alloys. Compd. 364 (2004) 48-52.

DOI: 10.1016/s0925-8388(03)00545-0

Google Scholar

[20] J.F. Wang, C.B. Ponton, R. Grössinger et al, A study of La-substituted strontium hexaferrite by hydrothermal synthesis, J. Alloys Compd. 369 (2004) 170-177.

DOI: 10.1016/j.jallcom.2003.09.097

Google Scholar

[21] L. Lechevallier, J.M. Le Breton, J.F. Wang et al, Structural analysis of hydrothermally synthesized Sr1−xSmxFe12O19 hexagonal ferrites, J. Magn. Magn. Mater. 269 (2004) 192-196.

DOI: 10.1016/s0304-8853(03)00591-2

Google Scholar

[22] X.S. Liu, W. Zhong, S. Yang et al, Influences of La3+ substitution on the structure and magnetic properties of M-type strontium ferrites, J. Magn. Magn. Mater. 238 (2002) 207-214.

DOI: 10.1016/s0304-8853(01)00914-3

Google Scholar

[23] J.F. Wang, C.B. Ponton, I.R. Harris, A study of Sm-substituted SrM magnets sintered using hydrothermally synthesised powders, J. Magn. Magn. Mater. 298 (2006) 122-131.

DOI: 10.1016/j.jmmm.2005.03.012

Google Scholar

[24] X. Liu, W. Zhong, S. Yang et al, Structure and Magnetic Properties of La3+-Substituted Strontium Hexaferrite Particles Prepared by Sol-Gel Method, Phys. Status Solid A. 193 (2002) 314-319.

DOI: 10.1002/1521-396x(200209)193:2<314::aid-pssa314>3.0.co;2-w

Google Scholar

[25] M. M. Rashad, I. A. Ibrahim, A novel approach for synthesis of M-type hexaferrites nanopowders via the co-precipitation method, J Mater Sci: Mater Electron. 22 (2011) 1796-1803.

DOI: 10.1007/s10854-011-0365-2

Google Scholar

[26] H. Ovalioglu, H. Sozerib, M. Kabaera et al, Magnetic properties of nano-crystalline barium ferrite synthesized by different synthesis route, Acta. Phys. Pol A. 118 (2010) 1020-1021.

DOI: 10.12693/aphyspola.118.1020

Google Scholar

[27] Y.X. Li, H.W. Zhang, Y.L. Liu et al, Synthesis and electro-magnetic properties of polyaniline-barium ferrite nanocomposite, Chinese J. Chem. Phys. 20 (2007) 739-742.

DOI: 10.1088/1674-0068/20/06/739-742

Google Scholar

[28] A. Mali, A. Ataie, Structural characterization of nano-crystalline BaFe12O19 powders synthesized by sol-gel combustion route, Scripta. Mater. 53 (2005) 1065-1070.

DOI: 10.1016/j.scriptamat.2005.06.037

Google Scholar

[29] Y.P. Fu, C.H. Lin, K.Y. Pan, Barium ferrite powders prepared by microwave-induced combustion process and some of their properties, J. Alloys. Compd. 364 (2004) 221-224.

DOI: 10.1016/s0925-8388(03)00501-2

Google Scholar

[30] J. Jiang, L.H. Ai, D.B. Qin et al, Preparation and characterization of electromagnetic functionalized polyaniline / BaFe12O19 composites, Syn. Met. 159 (2009) 695-699.

DOI: 10.1016/j.synthmet.2008.12.021

Google Scholar

[31] C.R. Zhang, Q.L. Li, Y. Ye, Preparation and characterization of polypyrrole / nano-SrFe12O19 composites by in situ polymerization method, Syn. Met. 159 ( 2009) 1008-1013.

DOI: 10.1016/j.synthmet.2009.01.013

Google Scholar

[32] C.J. Li, B. Wang, J.N. Wang. Magnetic and microwave absorbing properties of electrospun Ba(1-x)LaxFe12O19 nanofibers, J. Magn. Magn. Mater. 324 (2012) 1305-1311.

DOI: 10.1016/j.jmmm.2011.11.016

Google Scholar

[33] Y. Xie, X.W. Hong, Y.H. Gao et al, Synthesis and characterization of La / Nd-doped barium-ferrite / polypyrrole nanocomposites, Synth. Met. 162 (2012) 677-681.

DOI: 10.1016/j.synthmet.2012.02.023

Google Scholar

[34] D.A. Makeiff, T. Huber, Microwave absorption by polyaniline–carbon nanotube composites, Synth. Met. 156 (2006) 497-500.

DOI: 10.1016/j.synthmet.2005.05.019

Google Scholar