Inductive Heating Property of Superparamagnetic Graphene Nanosheets-Fe3O4 Nanoparticles Hybrid in an AC Magnetic Field for Localized Hyperthermia

Article Preview

Abstract:

The superparamagnetic graphene nanosheets–Fe3O4 nanoparticles (GNs–Fe3O4) hybrid has been successfully prepared via an easy and scalable chemical precipitation method. The inductive heat property of GNs–Fe3O4 hybrid in an alternating current (AC) magnetic field was investigated. The potential of GNs–Fe3O4 hybrid was evaluated for localized hyperthermia treatment of cancers. The GNs–Fe3O4 hybrid exhibits a superparamagnetic behavior, its specific saturation magnetization, Ms is 66.963 emu g-1. After exposed in the AC magnetic field for 1140 sec, the temperature of physiological saline suspension containing GNS–Fe3O4 hybrid were 81 oC. The GNs–Fe3O4 hybrid will be useful as good thermoseeds for localized hyperthermia treatment of cancers.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

347-352

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. van der Zee: Annu. Oncol., Vol. 13 (2002) No. 8, p.1173.

Google Scholar

[2] P. Moroz, S.K. Jones and B.N. Gray: Int. J. Hyperther., Vol. 18 (2002) No. 4, p.267.

Google Scholar

[3] M.S.A. Darwish, N.H.A. Nguyen, A. Ševců, I. Stibor and S.K. Smoukov: Mate. Sci. and Eng. C, Vol. 63 (2016), p.88.

Google Scholar

[4] A. Hervault and N.T.K. Thanh: Nanoscale, Vol. 6 (2014) No. 20, p.11553.

Google Scholar

[5] J.Q. Cao, Y.X. Wang, J.F. Yu, J.Y. Xia, C.F. Zhang, D.Z. Yin and Urs O. Häfeli: J. Magn. Magn. Mater., Vol. 277 (2004) No. 1, p.165.

Google Scholar

[6] J. Wang, B.L. Zhang, L. Wang, M. Wang and F.B. Gao: Mater. Sci. Eng. C, Vol. 48 (2015), p.416.

Google Scholar

[7] N.S. Ye, Y.L. Xie, P.Z. Shi, T. Gao and J.C. Ma: Mater. Sci. Eng. C, Vol. 45 (2014) No. 45, p.8.

Google Scholar

[8] Q.A. Pankhurst, J. Connolly, S.K. Jones and J. Dobson: J. Phys. D. Appl. Phys., Vol. 36 (2003) No. 13, p.167.

Google Scholar

[9] P. Tartaj, M.D.P. Morales, S. Veintemillas-Verdaguer, T. González-Carreño and C.J. Serna: J. Phys. D. Appl. Phys., Vol. 36 (2003) No. 13, p.182.

Google Scholar

[10] A. Jordan, P. Wust, H. Fähling, W. John, A. Hinz and R. Felix: Int. J. Hyperther., Vol. 9 (1993) No. 1, p.51.

Google Scholar

[11] T. Minamimura, H. Sato, S. Kasaoka, T. Saito, S. Ishizawa, S. Takemori, K. Tazawa and K. tsukada: Int. J. Oncol., Vol. 16 (2000) No. 6, p.1153.

DOI: 10.3892/ijo.16.6.1153

Google Scholar

[12] A.K. Gupta and M. Gupta: Biomaterials, Vol. 26 (2005) No. 18, p.3995.

Google Scholar

[13] A. Ito, Y. Kuga, H. Honda, H. Kikkawa, A. Horiuchi, Y. Watanabe and T. Kobayashi: Cancer Lett., Vol. 212 (2004) No. 2, p.167.

Google Scholar

[14] A. Jordan, R. Scholz, P. Wust, H. Fähling and R. Felix: J. Magn. Magn. Mater., Vol. 201 (1999) No. 1-3, p.413.

Google Scholar

[15] V. Singh, D. Joung, L. Zhai, S. Das, S.I. Khondaker and S. Seal: Prog. Mater. Sci., Vol. 56 (2011) No. 8, p.1178.

Google Scholar

[16] A.K. Geim and A.H. Macdonald: Phys. Today, Vol. 23 (2007) No. 8, p.35.

Google Scholar

[17] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva and A.A. Firsov: Science, Vol. 306 (2004) No. 5696, p.666.

DOI: 10.1126/science.1102896

Google Scholar

[18] M.J. Allen, V.C. Tung and R.B. Kaner: Chem. Rev., Vol. 110 (2010) No. 1, p.132.

Google Scholar

[19] A. Tomitaka, K. Ueda, T. Yamada and Y. Takemura: J. Magn. Magn. Mater., Vol. 324 (2012) No. 21, p.3437.

Google Scholar

[20] S.H. Yu and M. Yoshimura: Adv. Funct. Mater., Vol. 12 (2002) No. 1, p.9.

Google Scholar

[21] D.L. Zhao, X.X. Wang, X.W. Zeng, Q.S. Xia and J.T. Tang: J. Alloys Compd., Vol. 477 (2009) No. 1-2, p.739.

Google Scholar

[22] J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth and S. Roth: Nature, Vol. 446 (2007) No. 7131, p.60.

DOI: 10.1038/nature05545

Google Scholar

[23] X. Yang, X. Zhang, Y. Ma, Y. Huang, Y. Wang and Y. Chen: J. Mater. Chem., Vol. 19 (2009) No. 19, p.2710.

Google Scholar

[24] P. Lian, X. Zhu, S. Liang, Z. Li, W. Yang and H. Wang: Electrochimica Acta, Vol. 55 (2010) No. 12, p.3909.

Google Scholar

[25] X. Du, P. Guo, H. Song and X. Chen: Electrochimica Acta, Vol. 55 (2010) No. 16, p.4812.

Google Scholar

[26] K.N. Kudin, B. Ozbas, H.C. Schniepp, R.K. Prud'homme, I.A. Aksay and R. Car: Nano Letters, Vol. 8 (2008) No. 1, p.36.

Google Scholar

[27] R. Hiergeist, W. Andrä, N. Buske, R. Hergt, I. Hilger, U. Richter and W. Kaiser: J. Magn. Magn. Mater., Vol. 201 (1999) No. 1-3, p.420.

DOI: 10.1016/s0304-8853(99)00145-6

Google Scholar

[28] M. Ma, Y. Wu, J. Zhou, Y. Sun, Y. Zhang and N. Gu: J. Magn. Magn. Mater., Vol. 268 (2004) No. 1-2, p.33.

Google Scholar