Lattice Structure and Magnetic Behavior of Ga Ion Doped Multiferroics CaMn7O12

Article Preview

Abstract:

The lattice structure and magnetism of polycrystalline CaMn7-xGaxO12 (x = 0, 0.1, 0.2, 0.3, 0.4) synthesized by solid state method have been investigated. The refined x-ray diffraction patterns show that a well single phase Ga doped CaMn7O12 crystals can be obtained by solid state method and their lattice structure is rhombohedral with R-3. The lattice parameter a linearly decreases while parameter c linearly increases with increasing doping concentration, leading to a lattice distortion. Magnetic susceptibility and inverse susceptibility as a function of temperature show that CaMn7-xGaxO12 and undoped CaMn7O12 behave the basically identical magnetic characterization, that is, there are two magnetic phase transitions at 90 K and 40 K. And the antiferromagnetic transitional temperature is not obviously influenced by non-magnetic Ga ions doping. However, the magnetization at temperature lower than 40 K is enhanced and there is a new transitional temperature point observed at temperature range between 40 and 90 K, which indicates that Ga ions participate into the magnetic interaction.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

359-364

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. F. Wang, J. M. Liu, and Z. F. Ren, Adv. Phys., 58(2009)321.

Google Scholar

[2] D. Khomskii, Physics, 2(2009)20.

Google Scholar

[3] J. B. Neaton, C. Ederer, U. V. Waghmare, N. A. Spaldin, and K. M. Rabe, Phys. Rev. B, 71(2005)014113.

Google Scholar

[4] T. Kimura, T. Goto, and H. Shintani, Nature, 55(2003)426.

Google Scholar

[5] S. Dong, and J. M. Liu, Modern Physics Letters B, 26(2012)857.

Google Scholar

[6] R. D. Johnson, L. C. Chapon, D. D. Khalyavin, P. Manuel,P. G. Radaelli, and C. Martin, Phys. Rev. Lett., 108(2012)067201.

Google Scholar

[7] G. Zhang, S. Dong , Z. B. Yan, and Q. Zhang, Phys. Rev. B, 84(2011)174413.

Google Scholar

[8] X. Z. Lu, M. H. Whangbo, S. Dong ,X. G. Gong, and H. J. Xiang, Phys. Rev. Lett., 108(2012)187204.

Google Scholar

[9] J. Sannigrahi , S. Chattopadhyay, D. Dutta, S. Giri, and S. Majumdar, J. Phys.: Condens. Matter, 25(2013)246001.

Google Scholar

[10] H. G. Zhang, X. C. Ma, and L. Xie, International Journal of Modern Physics B, 29(2015)1550221.

Google Scholar

[11] M. M. Seikh, V. Caignaert, O. I. Leedev, and B. Raveau, Solid State Communications, 180(2014)52.

Google Scholar

[12] R. H. Zhang, J. Q. Dai, Z. H. Niu, Y. Li, Z. Y. Cheng, Z. Y. Wang, Chines. Journal of Inorganic Chemistry, 32(2016)762.

Google Scholar

[13] B. H. Toby, J. Appl. Cryst, 34(2001)210.

Google Scholar

[14] A. C. Larson, R. B. V. Dreele, Los Alamos National Laboratory Report LAUR, 86(2004)748.

Google Scholar

[15] K. Binder, and A. P. Young, Rev. Mod. Phys., 58(1986)801.

Google Scholar