An Efficient Method to Form TiO2/CdS Nanotube Arrays Using Anodic Aluminum Oxide (AAO) Templates

Article Preview

Abstract:

In this paper, a simple, efficient and environmental friendly method was proposed to fabricate TiO2/CdS nanotube arrays. The composite nanotubes with a core-shell coaxial structure were fabricated via a simple method of liquid deposition and double diffusion using anodic aluminum oxide (AAO) templates. The photocatalytic properties of the nanotube arrays (TiO2, TiO2/CdS) were confirmed by the degradation of methyl orange (MO) under UV irradiation. Compared to bare TiO2 nanotube arrays, TiO2/CdS composite nanotube arrays showed improved photocatalytic performance: The degradation efficiency of TiO2/CdS and TiO2 nanotube arrays towards methyl orange was 65% and 39%, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

374-380

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Q. Zheng, B. Zhou, J. Bai, L. Li, Z. Jin, J. Zhang, J. Li, Y. Liu, W. Cai and X. Zhu: Adv. Mater. Vol. 20 (2008), p.1044.

Google Scholar

[2] J. Zhang, B. Zhou, Q. Zheng, J. Li, J. Bai, Y. Liu and W. Cai: Water Res. Vol. 43 (2009), p. (1986).

Google Scholar

[3] L. K. Tan, M. K. Kumar, W. W. An and H. Gao: 'Transparent ACS Appl. Mater. Interfaces. Vol. 2 (2010), p.498.

Google Scholar

[4] J. Ryu, S. H. Lee, D. H. Nam and C. B. Park: Adv. Mater. Vol. 23 (2011), p.1883.

Google Scholar

[5] M. Paulose, O. K. Varghese, G. K. Mor, C. A. Grimes and K. G. Ong Nanotechnology Vol. 17 (2006), 17 p.398.

Google Scholar

[6] O. K. Varghese, D. Gong, M. Paulose, K. G. Ong, E. C. Dickey and C. A. Grimes: Adv. Mater. Vol. 15 (2003), p.624.

Google Scholar

[7] J. H. Park, S. Kim and A. J. Bard: Nano Lett. Vol. 6 (2005), p.24.

Google Scholar

[8] Y. J. Zhang, W. Yan, Y. P. Wu and Z. H. Wang: Mater. Lett. Vol. 23 (2008), p.3846.

Google Scholar

[9] N. K. Allam, K. Shankar and C. A. Grimes: J. Mater. Chem. Vol. 18 (2008), p.2341.

Google Scholar

[10] K. Shankar, G. K. Mor, H. E. Prakasam, S. Yoriya, M. Paulose, O. K. Varghese and C. A. Grimes: Nanotechnology Vol. 18 (2007), p.065707.

DOI: 10.1088/0957-4484/18/6/065707

Google Scholar

[11] K. Zhu, T. B. Vinzant, N. R. Neale and A. J. Frank: Nano Lett. Vol. 7 (2007), p.3739.

Google Scholar

[12] Z. B. Yang, Z. Q. Ma , D. Y. Pan, D. S. Chen, F. Xu and S. M. Chen: Ceram. Int. Vol. 1 (2014), p.173.

Google Scholar

[13] M. Paulose, K. Shankar, O. K. Varghese, G. K. Mor and C. A. Grimes: J. Phys. D: Appl. Phys. Vol. 39 (2006), p.2498.

Google Scholar

[14] M. Paulose, K. Shankar, O. K. Varghese, G. K. Mor, B. Hardin ,C. A. Grimes: Nanotechnology Vol. 17 (2006), p.1446.

Google Scholar

[15] G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese and C. A. Grimes: Nano Lett. Vol. 6 (2005), p.215.

Google Scholar

[16] J. M. Macak, H. Tsuchiya, A. Ghicov and P. Schmuki: Electrochem. Commun. Vol. 7 (2005), p.1133.

Google Scholar

[17] W. Zhao, Y. Sun and F. N. Castellano: J. Am. Chem. Soc. Vol. 130 (2008), p.12566.

Google Scholar

[18] S. C. Hayden, N. K. Allam and M. A. El-Sayed: 'TiO2 Nanotube/CdS Hybrid Electrodes: J. Am. Chem. Soc. Vol. 132 (2010), p.14406.

DOI: 10.1021/ja107034z

Google Scholar

[19] N. Baram, D. Starosvetsky, J. Starosvetsky, M. Epshtein, R. Armon and Y. Ein-Eli: Electrochim. Acta. Vol. 54 (2009), p.3381.

DOI: 10.1016/j.electacta.2008.12.033

Google Scholar

[20] Q. Y. Wang, H. Q. Jiang,  S. Y. Zang, J. S. Li and Q. F. Wang: J. Alloy. Compd. Vol. 586 (2014) p.411.

Google Scholar

[21] Z. L. Ma, G. F. Huang, D. S. Xu, M. G. Xia, W. Q. Huang and Y. Tian: Mater. Lett. Vol. 1 (2013), p.37.

Google Scholar

[22] X. F. Gao, W. T. Sun, Z. D. Hu, G. Ai, Y. L. Zhang, S. Feng, F. Li and L. M. Pen: J. Phys. Chem. C. Vol. 113 (2009), p.20481.

Google Scholar

[23] Q. Kang, S. H. Liu, L. X. Yang, Q. Y. Cai and C. A. Grimes: ACS Appl. Mater. Interfaces. Vol. 3 (2011), p.746.

Google Scholar

[24] T. S. Natarajan, K. Natarajan, H. C. Bajaj, and R. J. Tayade: Ind. Eng. Chem. Res. Vol. 50 (2011), p.7753.

Google Scholar

[25] C. C. Chen, C. H. Cheng and C. K. Lin: Ceram. Int. Vol. 39 (2013) p.6631.

Google Scholar

[26] S. L. Feng, J. Y. Yang, M. Liu, H. Zhu, J. S. Zhang, G. Li, J. Y. Peng and Q. Z. Liu: Electrochimica Acta. Vol. 83 (2012), p.321.

Google Scholar

[27] W. Zhu, X. Liu, H. Q. Liu, D. L. Tong, J. Y. Yang, and J. Y. Peng: J. Am. Chem. Soc. Vol. 132 (2010), p.12619.

Google Scholar

[28] C. Ratanatawanate, A. Chyao and K. J. Balkus, Jr: J. Am. Chem. Soc. Vol. 133 (2011), p.3492.

Google Scholar

[29] G. Thirumala Rao, R. Joyce Stella, B. Babu, K. Ravindranadh, Ch. Venkata Reddy, Jaesool Shim and R.V.S.S.N. Ravikumar: Mat. Sci. and Eng. B Vol. 201 (2015), p.78.

Google Scholar

[30] X. Li, T. Xia, C. H. Xua, J. Murowchickc and X. B. Chena: Catal. Today Vol. 225 (2014), p.64.

Google Scholar

[31] G. D. Yang, B. L. Yang, T. C. Xiao and Z. F. Yan: Appl. Surf. Sci. Vol. 283 (2013), p.402.

Google Scholar

[32] S. Wang and S. Zhou: J. Hazard. Mater. Vol. 185 (2011), p.77.

Google Scholar