Remarkable Sunlight Photocatalytic Activity due to Synergetic Effect of ZnO with Cu

Article Preview

Abstract:

The ZnO nanorod was synthesized by the hydrothermal method, and Cu/ZnO nanorod was synthesized by modifying the prepared ZnO nanorod. The TEM was used to characterize the morphology and microstructure for ZnO and Cu/ZnO nanorod. The length of nanorod ZnO was about 700-800 nm, and the diameter about 40-50 nm. There was no change of ZnO in length and diameter when doped with Cu. The degradation of methylene blue (MB) in an aqueous solution under sunlight irradiation was carried out to evaluate the photocatalytic activity. The Cu/ZnO nanorod shows significantly higher photocatalytic activity (99.91%) than ZnO nanorod (89.66%) under sunlight irradiation. The degradation of MB accords with pseudo-first order kinetics, and the appear rate constants kapp of 7% Cu/ZnO nanorod was about 3 times higher than ZnO nanorod. The synergetic effect between ZnO nanorod and Cu on the photocatalytic degradation of MB exists clearly for all the nanorods, and the optimum synergetic effect was found at a weight ratio of 7 wt % (Cu/ZnO). It hoped our works could provide valuable information on the synthesis and application of ZnO-based heterogeneous photocatalysis.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

388-394

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Fujishima, K. Honda: Nature, Vol. 238, (1972) p.37.

Google Scholar

[2] D. Jassby, J.F. Budarz, M. Wiesner: Environmental Science & Technology, Vol. 46, (2012) No. 13, p.6934.

Google Scholar

[3] Q. Jia, H Ji, Y Zhang: Journal of Hazardous Materials, Vol. 276, (2014) p.262.

Google Scholar

[4] J.N. Schrauben, R. Hayoun, C.N. Valdez, M. Braten, L. Fridley, and J.M. Mayer: Science, Vol. 336, (2012) No. 6086, p.1298.

DOI: 10.1126/science.1220234

Google Scholar

[5] C. Han, M.Q. Yang, B. Weng, and Y.J. Xu: Physical Chemistry Chemical Physics, Vol. 16, (2014) No. 32, p.16891.

Google Scholar

[6] H.Q. Sun, S.Z. Liu, S.M. Liu, and S.B. Wang: Applied Catalysis B: Environmental, Vol. 146, (2014) p.162.

Google Scholar

[7] A. Hameed, M. Aslam, I.M. I Ismail: Applied Catalysis B: Environmental, Vol. 160, (2014) p.227.

Google Scholar

[8] G. Corro, S. Cebada, U. Pal, J.L.G. Fierro, and J. Alvarado: Applied Catalysis B: Environmental, Vol. 165, (2015) p.555.

DOI: 10.1016/j.apcatb.2014.10.048

Google Scholar

[9] N. Sinha, G. Ray, S. Godara, M.K. Gupta, and B. Kumar: Materials Research Bulletin, Vol. 59, (2014) p.267.

Google Scholar

[10] D.M. Zhou, K.R. Kittilstved: Journal of Materials Chemistry C, Vol. 3, (2015) No. 17, p.4352.

Google Scholar

[11] S. Chakrabarti, B.K. Dutta: Journal of Hazardous Materials, Vol. 112, (2004) No. 3, p.269.

Google Scholar

[12] C. Hariharan: Applied Catalysis A: General, Vol. 304, (2006) p.55.

Google Scholar

[13] R. Comparelli, E. Fanizza, M.L. Curri, P.D. Cozzoli, G. Mascolo, and A. Agostiano: Applied Catalysis B: Environmental, Vol. 60, ( 2005) No. 1, p.1.

DOI: 10.1016/j.apcatb.2005.02.013

Google Scholar

[14] Q Wang, B.Y. Geng, S.Z. Wang: Environmental Science & Technology, Vol. 43, (2009) No. 23, p.8968.

Google Scholar

[15] Y.M. Lin, D.Z. Li, J.H. Hu, G.C. Xiao, J.X. Wang, W.J. Li, and X.Z. Fu: The Journal of Physical Chemistry C, Vol. 116, (2012) No. 9, p.5764.

Google Scholar

[16] M.H. Zamankhan, B. Ayati, H. Ganjidoust: Water Environment Research, Vol. 86, (2014) No. 9, p.771.

Google Scholar

[17] H. Zhang, R.L. Zong, J.C. Zhao, and Y.F. Zhu: Environmental Science & Technology, Vol. 42, (2008) No. 10, p.3803.

Google Scholar

[18] X. Li, D. Wang, G. Cheng: Applied Catalysis B: Environmental, Vol. 81, (2008) No. 3, p.267.

Google Scholar

[19] L.W. Zhang, H.H. Mohamed, R. Dillert, and D. Bahnemann: Journal of Photochemistry and Photobiology C: Photochemistry Reviews, Vol. 13, (2012) No. 4, p.263.

DOI: 10.1016/j.jphotochemrev.2012.07.002

Google Scholar

[20] D.S. Wang, J. Zhang, Q.Z. Luo, X.Y. Li, Y.D. Duan, and J. An. Journal of Hazardous Materials, Vol. 169, (2009) No. 1, p.546.

Google Scholar

[21] G.Z. Liao, S. Chen, X. Quan, Y.B. Zhang, and H.M. Zhao: Applied Catalysis B: Environmental, Vol. 102, (2011) p.126.

Google Scholar

[22] Y.H. Zheng, L.R. Zheng, Y.Y. Zhan, X.Y. Lin, Q. Zheng, and K.M. Wei: Inorganic Chemistry, Vol. 46, (2007) No. 17, p.6980.

Google Scholar

[23] J.B. Bulko, R.G. Herman, K. Klier, and G.W. Simmons: Journal of Physical Chemistry, Vol. 83, (1979) No. 24, p.3118.

Google Scholar

[24] J. Ryu, W. Choi: Environmental Science & Technology, Vol. 38, (2004) No. 10, p.2928.

Google Scholar

[25] H. Goto, Y. Hanada, T. Ohno: Journal of Catalysis, Vol. 225, (2004) No. 1, p.223.

Google Scholar

[26] A. Akyol, H.C. Yatmaz, M. Bayramoglu: Applied Catalysis B: Environmental, Vol. 54, (2004) No. 1, p.19.

Google Scholar

[27] S.C. Dhanabalan, J.P. Garcia, D. Calestani: Crystal Research and Technology, Vol. 49, (2014) No. 8, p.558.

Google Scholar