Effects of Na-Doping on Structure and Magnetic Properties of LaCoO3

Article Preview

Abstract:

Effect of Na doping on the structural and magnetic properties of La1-xNaxCoO3 (0≤x≤0.4) nanopowder samples synthesized by sol-gel method have been investigated. Rietveld crystal structure refinement of the X-ray diffraction data shows that La1−xNaxCoO3 (x≤0.3) crystallizes in the rhombohedral structure with space group . The lattice parameters decrease and the crystallite sizes increase with the increase of x. For the sample with x=0.4, a secondary hexagonal phase NaCo2O4 was observed. The zero field cooling (ZFC) and field cooling (FC) curve of the samples (x≤0.3) exhibit a paramagnetic-ferromagnetic transition with decreasing temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

403-409

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P Mandal, P,Choudhury and S. K Biswas. Physical Review B Condensed Matter, (2004), 70(10): 2516-2528.

Google Scholar

[2] H. Hashimoto, T. Kusunose and T. Sekino. Journal of Alloys & Compounds, (2010), 494(1–2): L3–L6.

Google Scholar

[3] R. Thakur, A. Srivastava and R. K. Journal of Alloys & Compounds, (2012), 516(6): 58-64.

Google Scholar

[4] V. Aswin, P. Kumar and P. Singh. Journal of Materials Science, (2015), 50(1): 366-373.

Google Scholar

[5] S, Murata, S, Isida and M, Suzuki. Physica B Condensed Matter, (1999), s263–264: 647-649.

Google Scholar

[6] D. Louca, J. L. Sarrao and G. H. Kwei. Mrs Proceedings, (1997), 494.

Google Scholar

[7] A. M. Zhang, X. S. Wu and Q. Bian. Vacuum Electron Sources Conference and Nanocarbon. IEEE, (2010): 118–121.

Google Scholar

[8] V. Morchshakov, L. Haupt and K. Bärner. Journal of Alloys & Compounds, (2004), 372(s 1–2): 17-24.

Google Scholar

[9] K. Knížek, J. Hejtmánek and M. Maryško. Physical Review B, (2013), 88(22): 142-146.

Google Scholar

[10] Chen, Xinzhi, Grande. Chemistry of Materials, (2013), 25(6): 927-934.

Google Scholar

[11] P. Mandal, P. Choudhury and S. KBiswas. Physical Review B Condensed Matter, (2004), 70(10): 2516-2528.

Google Scholar

[12] F. M. Zimmer, M. Schmidt, S. G. Magalhaes. Physical Review E Statistical Nonlinear & Soft Matter Physics, (2014), 89(6-1): 062117-062117.

Google Scholar

[13] X. Y. Zhang, Y. Chen and Z. Y. Li. Journal of Physics Condensed Matter, (2007), 19(26): 66211(1-15).

Google Scholar

[14] J. Wu, C. Leighton. Physical Review B, (2003), 67(17): 386-393.

Google Scholar

[15] H. Szymczak, G. J. Babonas and R. Szymczak. Japanese Journal of Applied Physics, (1997), 36(6A): 3492-3496.

Google Scholar

[16] P. Mandal, P. Choudhury and S. K. Biswas. Physical Review B Condensed Matter, (2004), 70(10): 2516-2528.

Google Scholar

[17] I. G. Deac and A. Vladescu. Journal of Magnetism & Magnetic Materials, (2014), 365(5): 1–7.

Google Scholar

[18] A. Buerger, Powder method in X-ray crystallograhphy, (1958).

Google Scholar

[19] A. Fondado, M. P. Breijo and C. Rey-Cabezudo. Journal of alloys and compounds, (2001), 323: 444-447.

Google Scholar

[20] Rodriguez-Carvajal, FULLPROF Suite, J. Physica B. 192: 55 (1993).

Google Scholar

[21] A. Buerger, Powder method in X-ray crystallograhphy, (1958).

Google Scholar

[22] M. Arora, S. Chauhan and P. C. Sati. Ceramics International, (2014), 40(8): 13347-13356.

Google Scholar

[23] G. Lang, J. Bobroff and HAlloul. Physical Review B Condensed Matter, (2005), 72(9): 55-61.

Google Scholar

[24] M. Ellouze. Journal of Materials Science, (2014).

Google Scholar

[25] M. Arora, S. Chauhan, P. C. Sati. Ceramics International, (2014), 40(8): 13347-13356.

Google Scholar

[26] J. Moradi, M. E. Ghazi and M. H. Ehsani. Journal of Solid State Chemistry, (2014), 215(3): 1-7.

Google Scholar