[1]
E. Bakangura, L. Wu, L. Ge, Z.J. Yang and T.W. Xu: Mixed matrix proton exchange membranes for fuel cells: State of the art and perspectives, Progress in Polymer Science Vol. 57 (2016), pp.103-152.
DOI: 10.1016/j.progpolymsci.2015.11.004
Google Scholar
[2]
C.O. Mathuna, T. O'Donnell, R.V. Martinez-Catala, J. Rohan and B. O'Flynn: Energy scavenging for long-term deployable wireless sensor networks, Talanta Vol. 75 (2008), pp.613-623.
DOI: 10.1016/j.talanta.2007.12.021
Google Scholar
[3]
Y.L. Zhu, J.S. Liang, C. Liu, T.L. Ma and L.D. Wang: development of a passive direct methanol fuel cell (DMFC) twin-stack for long-term operation, Journal of Power Sources Vol. 193 (2009), pp.649-655.
DOI: 10.1016/j.jpowsour.2009.03.069
Google Scholar
[4]
James Larminie: Fuel Cell Systems Explained (Second Edition), John Wiley & Sons Ltd.
Google Scholar
[5]
K. Javed, R. Gouriveau, N. Zerhouni and D. Hissel: Prognostics of Proton Exchange Membrane Fuel Cells stack using an ensemble of constraints based connectionist networks, Journal of Power Sources Vol. 324 (2016), pp.745-757.
DOI: 10.1016/j.jpowsour.2016.05.092
Google Scholar
[6]
L.D. Santos, F. Colmati and E.R. Gonzalez: Preparation and characterization of supported Pt-Ru catalysts with a high Ru content, Journal of Power Sources Vol. 159 (2006), pp.869-877.
DOI: 10.1016/j.jpowsour.2005.12.086
Google Scholar
[7]
C.T. Hsieh, Y.S. Chang, A. K. Roy, P.Y. Yu and K.M. Yin: Fast Synthesis of Binary Pt-Sn Nanocatalysts onto Graphene Sheets for Promoted Catalytic Activity, Electrochimica Acta Vol. 149 (2014), pp.278-284.
DOI: 10.1016/j.electacta.2014.10.108
Google Scholar
[8]
X. Wang, L.J. Zhang, H.G. Gong, Y.L. Zhu, H.H. Zhao and Y. Fu: Dealloyed PtAuCu electrocatalyst to improve the activity and stability towards both oxygen reduction and methanol oxidation reactions, Electrochimica Acta Vol. 212 (2016), pp.277-285.
DOI: 10.1016/j.electacta.2016.07.028
Google Scholar
[9]
Toray Industries, Inc: Toray's carbon fibre paper.
Google Scholar
[10]
H. Tang, S. Wang, M. Pan and R. Yuan: Porosity-graded micro-porous layers for polymer electrolyte membrane fuel cells, Journal of Power Sources Vol. 166 (2007), pp.41-46.
DOI: 10.1016/j.jpowsour.2007.01.021
Google Scholar
[11]
U. Wittstadt, E. Wagner and T. Jungmann: Membrane electrode assemblies for unitised regenerative polymer electrolyte fuel cells, Journal of Power Sources Vol. 145 (2005), pp.555-562.
DOI: 10.1016/j.jpowsour.2005.02.068
Google Scholar
[12]
Y. Yu, Z.K. Tu, Z.G. Zhan and M. Pan: Gravity effect on the performance of PEM fuel cell stack with different gas manifold positions, Energy Res Vol. 36 (2012), pp.845-855.
DOI: 10.1002/er.1837
Google Scholar
[13]
M. Li, S. Lou and C. Zeng: Corrosion behavior of TiN coated type 316 stainless steel in simulated PEMFC environment, Corrosion Science Vol. 46 (2004), pp.1369-1380.
DOI: 10.1016/s0010-938x(03)00187-2
Google Scholar
[14]
M. Alishahi, F. Mahboubi, Mousavi Khoie, M. Aparicio, R. Hübner, F. Soldera and R. Gago: Electrochemical behavior of nanocrystalline Ta/TaN multilayer on 316L stainless steel: Novel bipolar plates for proton exchange membrane fuel-cells, Journal of Power Sources Vol. 32 (2016).
DOI: 10.1016/j.jpowsour.2016.04.133
Google Scholar
[15]
H. Ahmad, S.K. Kamarudin, U.A. Hasran and W.R.W. Daud: A novel hybrid Nafion-PBI-ZP membrane for direct methanol fuel cells, Journal of Hydrogen Energy Vol. 36 (2011), pp.14668-14677.
DOI: 10.1016/j.ijhydene.2011.08.044
Google Scholar
[16]
R. Sood, S. Cavaliere, D.J. Jones and J. Rozière: Electrospun nanofibre composite polymer electrolyte fuel cell and electrolysis membranes, Nano Energy Vol. 26 (2016), p.729–745.
DOI: 10.1016/j.nanoen.2016.06.027
Google Scholar
[17]
S. Mollá and V. Compañ: Nanocomposite SPEEK-based membranes for Direct Methanol Fuel Cells at intermediate temperatures, Journal of Membrane Science Vol. 492 (2015), pp.123-136.
DOI: 10.1016/j.memsci.2015.05.055
Google Scholar
[18]
B. Marlene: Electrooxidation of methanol on PtMyOx (M = Sn, Mo, Os or W) electrodes, Electrochemistry Communication Vol. 7 (2005), p.703.
DOI: 10.1016/j.elecom.2005.04.024
Google Scholar
[19]
R. K. Chepuri and D. C. Rao: Chemical and electrochemical depositions of platinum group metals and their applications, Chemistry Review Vol. 249 (2005), p.613.
Google Scholar
[20]
K. Lee, S. Ferekh, A. Jo, S. Lee and H. Ju: Effects of hybrid catalyst layer design on methanol and water transport in a direct methanol fuel cell, Electrochimica Acta Vol. 177 (2015), pp.209-216.
DOI: 10.1016/j.electacta.2015.02.222
Google Scholar
[21]
A. Kumar and R.G. Reddy: Materials and design development for bipolar/end plates in fuel cells, Journal of Power Sources Vol. 129 (2004), pp.62-67.
DOI: 10.1016/j.jpowsour.2003.11.011
Google Scholar
[22]
S. Arisetty, A. K. Prasad and S. G. Advani: Metal foams as flow field and gas diffusion layer in direct methanol fuel cells, Journal of Power Sources Vol. 165 (2007), pp.49-57.
DOI: 10.1016/j.jpowsour.2006.12.008
Google Scholar
[23]
H. J Wu and H. F Zhang: Integrated anode structure for passive direct methanol fuel cells with neat methanol operation, Journal of Power Sources Vol. 248 (2014), pp.1264-1269.
DOI: 10.1016/j.jpowsour.2013.10.049
Google Scholar
[24]
Z. Guo and A. Faghri: Development of a 1 W passive DMFC, International Communications in Heat and Mass Transfer Vol. 35 (2008), pp.225-239.
DOI: 10.1016/j.icheatmasstransfer.2007.07.008
Google Scholar
[25]
F. Bidault, D.J.L. Brett, P.H. Middleton and N.P. Brandon: Review of gas diffusion cathodes for alkaline fuel cells, Journal of Power Sources Vol. 187 (2009), pp.39-48.
DOI: 10.1016/j.jpowsour.2008.10.106
Google Scholar
[26]
AFC Energy Plc, Cranleigh, Surrey, UK: AFC electrode passes 12 month milestone, CPI progress report, Fuel Cells Bulletin (2013), p.9.
DOI: 10.1016/s1464-2859(13)70295-5
Google Scholar
[27]
J. Ma and Y. Sahai: Effect of electrode fabrication method and substrate material on performance of alkaline fuel cells, Electrochemistry Communication Vol. 30 (2013), pp.63-66.
DOI: 10.1016/j.elecom.2013.02.005
Google Scholar
[28]
M. Raney: Method of producing finely-divided nickel, US Patent 628 (1927), p.190.
Google Scholar