Current Development of Key Materials for Low Temperature Fuel Cells

Article Preview

Abstract:

Low temperature fuel cells are promising environment-friendly energy conversion systems with high energy density and efficiency to be used as components of electronic devices for stationary and portable applications. In this paper, the key materials of the three types low temperature fuel cells are introduced, and the most recent advances related to the key materials and their character are reviewed. The current status of materials for electrolyte, catalyst and electrode materials is focused on.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

670-677

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Bakangura, L. Wu, L. Ge, Z.J. Yang and T.W. Xu: Mixed matrix proton exchange membranes for fuel cells: State of the art and perspectives, Progress in Polymer Science Vol. 57 (2016), pp.103-152.

DOI: 10.1016/j.progpolymsci.2015.11.004

Google Scholar

[2] C.O. Mathuna, T. O'Donnell, R.V. Martinez-Catala, J. Rohan and B. O'Flynn: Energy scavenging for long-term deployable wireless sensor networks, Talanta Vol. 75 (2008), pp.613-623.

DOI: 10.1016/j.talanta.2007.12.021

Google Scholar

[3] Y.L. Zhu, J.S. Liang, C. Liu, T.L. Ma and L.D. Wang: development of a passive direct methanol fuel cell (DMFC) twin-stack for long-term operation, Journal of Power Sources Vol. 193 (2009), pp.649-655.

DOI: 10.1016/j.jpowsour.2009.03.069

Google Scholar

[4] James Larminie: Fuel Cell Systems Explained (Second Edition), John Wiley & Sons Ltd.

Google Scholar

[5] K. Javed, R. Gouriveau, N. Zerhouni and D. Hissel: Prognostics of Proton Exchange Membrane Fuel Cells stack using an ensemble of constraints based connectionist networks, Journal of Power Sources Vol. 324 (2016), pp.745-757.

DOI: 10.1016/j.jpowsour.2016.05.092

Google Scholar

[6] L.D. Santos, F. Colmati and E.R. Gonzalez: Preparation and characterization of supported Pt-Ru catalysts with a high Ru content, Journal of Power Sources Vol. 159 (2006), pp.869-877.

DOI: 10.1016/j.jpowsour.2005.12.086

Google Scholar

[7] C.T. Hsieh, Y.S. Chang, A. K. Roy, P.Y. Yu and K.M. Yin: Fast Synthesis of Binary Pt-Sn Nanocatalysts onto Graphene Sheets for Promoted Catalytic Activity, Electrochimica Acta Vol. 149 (2014), pp.278-284.

DOI: 10.1016/j.electacta.2014.10.108

Google Scholar

[8] X. Wang, L.J. Zhang, H.G. Gong, Y.L. Zhu, H.H. Zhao and Y. Fu: Dealloyed PtAuCu electrocatalyst to improve the activity and stability towards both oxygen reduction and methanol oxidation reactions, Electrochimica Acta Vol. 212 (2016), pp.277-285.

DOI: 10.1016/j.electacta.2016.07.028

Google Scholar

[9] Toray Industries, Inc: Toray's carbon fibre paper.

Google Scholar

[10] H. Tang, S. Wang, M. Pan and R. Yuan: Porosity-graded micro-porous layers for polymer electrolyte membrane fuel cells, Journal of Power Sources Vol. 166 (2007), pp.41-46.

DOI: 10.1016/j.jpowsour.2007.01.021

Google Scholar

[11] U. Wittstadt, E. Wagner and T. Jungmann: Membrane electrode assemblies for unitised regenerative polymer electrolyte fuel cells, Journal of Power Sources Vol. 145 (2005), pp.555-562.

DOI: 10.1016/j.jpowsour.2005.02.068

Google Scholar

[12] Y. Yu, Z.K. Tu, Z.G. Zhan and M. Pan: Gravity effect on the performance of PEM fuel cell stack with different gas manifold positions, Energy Res Vol. 36 (2012), pp.845-855.

DOI: 10.1002/er.1837

Google Scholar

[13] M. Li, S. Lou and C. Zeng: Corrosion behavior of TiN coated type 316 stainless steel in simulated PEMFC environment, Corrosion Science Vol. 46 (2004), pp.1369-1380.

DOI: 10.1016/s0010-938x(03)00187-2

Google Scholar

[14] M. Alishahi, F. Mahboubi, Mousavi Khoie, M. Aparicio, R. Hübner, F. Soldera and R. Gago: Electrochemical behavior of nanocrystalline Ta/TaN multilayer on 316L stainless steel: Novel bipolar plates for proton exchange membrane fuel-cells, Journal of Power Sources Vol. 32 (2016).

DOI: 10.1016/j.jpowsour.2016.04.133

Google Scholar

[15] H. Ahmad, S.K. Kamarudin, U.A. Hasran and W.R.W. Daud: A novel hybrid Nafion-PBI-ZP membrane for direct methanol fuel cells, Journal of Hydrogen Energy Vol. 36 (2011), pp.14668-14677.

DOI: 10.1016/j.ijhydene.2011.08.044

Google Scholar

[16] R. Sood, S. Cavaliere, D.J. Jones and J. Rozière: Electrospun nanofibre composite polymer electrolyte fuel cell and electrolysis membranes, Nano Energy Vol. 26 (2016), p.729–745.

DOI: 10.1016/j.nanoen.2016.06.027

Google Scholar

[17] S. Mollá and V. Compañ: Nanocomposite SPEEK-based membranes for Direct Methanol Fuel Cells at intermediate temperatures, Journal of Membrane Science Vol. 492 (2015), pp.123-136.

DOI: 10.1016/j.memsci.2015.05.055

Google Scholar

[18] B. Marlene: Electrooxidation of methanol on PtMyOx (M = Sn, Mo, Os or W) electrodes, Electrochemistry Communication Vol. 7 (2005), p.703.

DOI: 10.1016/j.elecom.2005.04.024

Google Scholar

[19] R. K. Chepuri and D. C. Rao: Chemical and electrochemical depositions of platinum group metals and their applications, Chemistry Review Vol. 249 (2005), p.613.

Google Scholar

[20] K. Lee, S. Ferekh, A. Jo, S. Lee and H. Ju: Effects of hybrid catalyst layer design on methanol and water transport in a direct methanol fuel cell, Electrochimica Acta Vol. 177 (2015), pp.209-216.

DOI: 10.1016/j.electacta.2015.02.222

Google Scholar

[21] A. Kumar and R.G. Reddy: Materials and design development for bipolar/end plates in fuel cells, Journal of Power Sources Vol. 129 (2004), pp.62-67.

DOI: 10.1016/j.jpowsour.2003.11.011

Google Scholar

[22] S. Arisetty, A. K. Prasad and S. G. Advani: Metal foams as flow field and gas diffusion layer in direct methanol fuel cells, Journal of Power Sources Vol. 165 (2007), pp.49-57.

DOI: 10.1016/j.jpowsour.2006.12.008

Google Scholar

[23] H. J Wu and H. F Zhang: Integrated anode structure for passive direct methanol fuel cells with neat methanol operation, Journal of Power Sources Vol. 248 (2014), pp.1264-1269.

DOI: 10.1016/j.jpowsour.2013.10.049

Google Scholar

[24] Z. Guo and A. Faghri: Development of a 1 W passive DMFC, International Communications in Heat and Mass Transfer Vol. 35 (2008), pp.225-239.

DOI: 10.1016/j.icheatmasstransfer.2007.07.008

Google Scholar

[25] F. Bidault, D.J.L. Brett, P.H. Middleton and N.P. Brandon: Review of gas diffusion cathodes for alkaline fuel cells, Journal of Power Sources Vol. 187 (2009), pp.39-48.

DOI: 10.1016/j.jpowsour.2008.10.106

Google Scholar

[26] AFC Energy Plc, Cranleigh, Surrey, UK: AFC electrode passes 12 month milestone, CPI progress report, Fuel Cells Bulletin (2013), p.9.

DOI: 10.1016/s1464-2859(13)70295-5

Google Scholar

[27] J. Ma and Y. Sahai: Effect of electrode fabrication method and substrate material on performance of alkaline fuel cells, Electrochemistry Communication Vol. 30 (2013), pp.63-66.

DOI: 10.1016/j.elecom.2013.02.005

Google Scholar

[28] M. Raney: Method of producing finely-divided nickel, US Patent 628 (1927), p.190.

Google Scholar