Shuttle-Like CuO as High-Performance Anode Materials for Lithium Ion Batteries

Article Preview

Abstract:

Shuttle-like CuO has been synthesized by treating commercial Cu(OH)2 powder at room temperature for an appropriate time. As anode material of lithium-ion batteries, shuttle-like CuO exhibits high specific capacity, high stability, and good rate performance, superior to commercial CuO powder. The shuttle-like CuO exhibited a high specific capacitance of 456.8 mAh g-1 at a current density of 100 mAg-1 and maintained a good stability in 50 cycles, suggesting that it can be a promising candidate for lithium-ion batteries. The high specific capacitance and remarkable rate capability are promising for applications in lithium-ion batteries with both high energy and power densities.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

688-692

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X. Zhou, J. Zhang, Q. Su, J. Shi, Y. Liu, G. Du: Electrochim Acta, (2014) No. 125, p.615–621.

Google Scholar

[2] L. Jin, Y. Qiu, H. Deng, W. Li, H. Li, S. Yang: Electrochim Acta, Vol. 25 (2011) No. 56, p.9127–9132.

Google Scholar

[3] B. Rangasamy, J.Y. Hwang, W. Choi: Carbon, Vol. 10 (2014) No. 77, p.1065–1072.

Google Scholar

[4] P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon: Nature, Vol. 6803 (2000) No. 407, pp.496-499.

DOI: 10.1038/35035045

Google Scholar

[5] X. Xia, Y. Zhang, D. Chao, G. Cao, Y. Zhang, L. Li, X. Ge, I.M. Bacho, J. Tu, H.J. Fan: Nanoscale, Vol. 10 (2014) No. 6, pp.5008-48.

Google Scholar

[6] Y. Zhang, X. Xia, X. Wang, Y. Mai, S. Shi, Y. Tang, C. Gu, J. Tu: J. Power Sources, Vol. 9 (2012) No. 213, pp.106-111.

Google Scholar

[7] P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon: Nature, Vol. 6803 (2000) No. 407, pp.496-499.

DOI: 10.1038/35035045

Google Scholar

[8] Feng JK, Xia H, Lai MO, Lu L: Mater Res Bull, Vol. 3 (2011) No. 46, pp.424-427.

Google Scholar

[9] Debart A, Dupont L, Poizot P, Leriche JB, Tarascon JM: J Electrochem Soc, Vol. 11 (2001) No. 148, pp.1266-1274.

Google Scholar

[10] Xiang JY, Tu JP, Yuan YF, Huang XH, Zhou Y, Zhang L: Electrochem Commun, Vol. 2 (2009) No. 11, p.262–265.

Google Scholar

[11] Chen LB, Lu N, Xu CM, Yu HC, Wang TH: Electrochim Acta, (2009) No. 54, p.4198–201.

Google Scholar

[12] J. Maier: Nat. Mater, (2005) No. 4, pp.805-815.

Google Scholar

[13] S. Grugeon, S. Laruelle, R. Herrera-Urbina, L. Dupont, P. Poizot, J.M. Tarascon: J. Electrochem. Soc, Vol. 148 (2001) No. 4 pp.285-292.

DOI: 10.1149/1.1353566

Google Scholar

[14] A. Debart, L. Dupont, P. Poizot, J.B. Leriche, J.M. Tarascon: J. Electrochem Soc, Vol. 148 (2001) No. 11, pp.1266-1274.

Google Scholar