Porous Carbon Derived from Metal-Organic Framework as an Anode for Lithium-Ion Batteries with Improved Performance

Article Preview

Abstract:

A facile two-step method for preparation of porous carbon materials was reported. We used a novel Co-MOF, made by cobalt nitrate and two organic ligands (9-ethylcarbazole-3,6-dicarboxylic acid and 1,3,5-Benzenetricarboxylic acid), as the template to synthesize the porous carbon through high temperature carbonization, which was applied as an anode material for lithium-ion batteries. A reversible capacity was maintained as high as 549 mA h g-1 after 49 cycles at a current density of 100 mA g-1, with coulombic efficiency of over 95%. The prepared porous carbon electrode also exhibited superior cycle stability and rate performance, making it a promising anode material for lithium-ion batteries.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

705-711

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. L. C. Rowsell, O. M. Yaghi: Microporous and Mesoporous Materials, Vol. 73(2004) No. 1, p.3.

Google Scholar

[2] L. Ji, Z. Lin, M. Alcoutlabi, X. Zhang: Energy & Environmental Science, Vol. 4 (2011) No. 8, p.2682.

Google Scholar

[3] J.M. Tarascon, M. Armand: Nature, 2001, Vol. 414 (2001) No. 6861, p.359.

Google Scholar

[4] J.B. Goodenough, Y. Kim: Chemistry of Materials, Vol. 22 (2009) No. 3, p.587.

Google Scholar

[5] T.Y. Ma, L. Liu, Z.Y. Yuan: Chemical Society Reviews, Vol. 42 (2013) No. 9, p.3977.

Google Scholar

[6] T. Kyotani, T. Nagai, S. Inoue, A Tomita: Chemistry of materials, Vol. 9 (1997) No. 2, p.609.

Google Scholar

[7] A. Vu, Y. Qian, A. Stein: Advanced Energy Materials, Vol. 2 (2012) No. 9, p.1056.

Google Scholar

[8] L. Ji, X. Zhang: Nanotechnology, Vol. 20 (2009) No. 15, p.155705.

Google Scholar

[9] Y.S. Hu, P. Adelhelm, B.M. Smarsly, S. Hore, M. Antonietti, J. Maier: Advanced Functional Materials, Vol. 17 (2007) No. 12, p.1873.

Google Scholar

[10] W. Xia, A. Mahmood, R. Zou, Q. Xu: Energy & Environmental Science, Vol. 8 (2015) No. 7, p.1837.

Google Scholar

[11] B. Liu, H. Shioyama, T. Akita, Q. Xu: Journal of the American Chemical Society, Vol. 130 (2008) No. 16, p.5390.

Google Scholar

[12] H.L. Jiang, B. Liu, Y.Q. Lan, K. Kuratani, T. Akita, H. Shioyama, FQ Zong, Q Xu: Journal of the American Chemical Society, Vol. 133 (2011) No. 31, p.11854.

DOI: 10.1021/ja203184k

Google Scholar

[13] G. Srinivas, V. Krungleviciute, Z.X. Guo, T. Yildirim: Energy & Environmental Science, Vol. 7 (2014) No. 1, p.335.

Google Scholar

[14] P. Pachfule, B. P. Biswal, R. Banerjee: Chemistry A European Journal, Vol. 18 (2012) No. 36, p.11399.

Google Scholar

[15] M. Hu, J. Reboul, S. Furukawa, N.L. Torad, Q.M. Ji, P. Srinivasu, K. Ariga, S. Kitagawa, Y. Yamauchi: Journal of the American Chemical Society, Vol. 134 (2012) No. 6, p.2864.

DOI: 10.1021/ja208940u

Google Scholar

[16] B. Liu, H. Shioyama, H. Jiang, X. Zhang, Q. Xu: Carbon, Vol. 48 (2010) No. 2, p.456.

Google Scholar

[17] W. Chaikittisilp, M. Hu, H. Wang, H.S. Huang, T. Fujita, K C.W. Wu, LC Chen, Y Yamauchi, K Ariga: Chemical communications, Vol. 48 (2012) No. 58, p.7259.

DOI: 10.1039/c2cc33433j

Google Scholar

[18] K. Xi, S. Cao, X. Peng, C. Ducati, R.V. Kumar, A. K. Cheetham: Chemical communications, Vol. 49 (2013) No. 22, p.2192.

Google Scholar

[19] X. Wang, X. Fang, X. Guo, Z. Wang, L. Chen: Electrochimica Acta, Vol. 97 (2013), p.238.

Google Scholar

[20] G. Xu, B. Ding, L. Shen, P. Nie, J. Han, J.P. Han, X.G. Zhang: Journal of Materials Chemistry A, Vol. 1 (2013) No. 14, p.4490.

Google Scholar

[21] L. Zuo, S. Chen, J. Wu, L. Wang, H. Hou, Y. Song: RSC Advances, Vol. 4 (2014) No. 106, p.61604.

Google Scholar

[22] F. Zheng, Y. Yang, Q. Chen: Nature communications, Vol. 5 (2014).

Google Scholar

[23] M. Kurmoo, H. Kumagai, M.A. Green, B.W. Lovett, S. J. Blundellc, A. Ardavanc, J. Singletonc: Journal of Solid State Chemistry, Vol. 159 (2001) No. 2, p.343.

Google Scholar

[24] S. Maiti, A. Pramanik, U. Manju, S. Mahanty: Microporous and Mesoporous Materials, Vol. 226 (2016), p.353.

DOI: 10.1016/j.micromeso.2016.02.011

Google Scholar

[25] J. Lee, J. Kim, T. Hyeon: Advanced Materials, Vol. 18 (2006) No. 16, p. (2073).

Google Scholar

[26] L. Hu, Q. Chen: Nanoscale, Vol. 6 (2014) No. 3, p.1236.

Google Scholar

[27] W. Guo, X. Lib, J. T. Xu, H. K. Liu, J.M. Ma, Sh. X. Dou: Electrochimica Acta, Vol. 188 (2016), pp.414-420.

Google Scholar

[28] Zh. Li, Zh.W. Xu, X.H. Tan, H. L Wang, C.M. B. Holt, T. Stephenson, B. C. Olsenab, D. Mitlin: Energy & Environmental Science, 2013, Vol. 6 (2013) No. 3, pp.871-878.

Google Scholar

[29] L. Qie, W.M. Chen, Z.H. Wang, Q.G. Shao, X. Li, X.L. Hu, W.X. Zhang, Y.H. Huang: Advanced materials, Vol. 24 (2012) No. 15, p. (2047).

Google Scholar