Homogeneous Growth of Ni(OH)2 Nanoparticle on Carbon Nanotubes for High-Performance Supercapacitor Electrode Material

Article Preview

Abstract:

A homogeneous Ni (OH)2/ carbon nanotubes (CNTs) nanocomposite with excellent supercapacitive performance has been synthesized via a facile chemical precipitation. The microstructure and morphology of Ni (OH)2/CNTs nanocomposite were investigated by XRD, SEM and TEM. It presented an ideal morphology with the nanosized Ni (OH)2 particles homogeneously growing on the CNTs. The electrochemical performance of the Ni (OH)2/CNTs nanocomposite was test by cyclic voltammetry, galvanostatic charge−discharge and electrochemical impedance spectroscopy techniques. The synthesized Ni (OH)2/CNTs nanocomposite shows superior electrochemical performance, including high capacitance, excellent rate capability and good cycle life. The homogeneous Ni (OH)2/ CNTs nanocomposite exhibited a high specific capacitance of 1741 F g-1 at a current density of 1A g-1 and maintained a good stability after 5000 cycles at 10A g-1`, suggesting that it can be a promising candidate for supercapacitor.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

732-737

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Li, L.P. Xin, X. Xu, Q.D. Liu, M. Zhang, S.J. Ding, M.S. Zhao and X.J. Lou: Sci. Rep, Vol. 5 (2015) p.9277–9282.

Google Scholar

[2] L.L. Zhang and X.S. Zhao: Chem. Soc. Rev, Vol. 38 (2009) No. 9, p.2520–2531.

Google Scholar

[3] X.H. Lu, M.H. Yu, G.M. Wang, Y.X. Tong and Y. Li: Energy Environ. Sci, Vol. 7 (2014) No. 7,p.2160–2181.

Google Scholar

[4] G Wang, L Zhang and J Zhang: Chemical Society Reviews, Vol. 41 (2012) No. 2, p.797–828.

Google Scholar

[5] Y.Y. Yang, Y.R. Liang, Y.D. Zhang, Z.Y. Zhang, Z.M. Li and Z.G. Hu: New. J. Chem, Vol. 39 (2015) No. 5, p.4035–4040.

Google Scholar

[6] Z. Yu and J. Thomas: Adv. Mater, Vol. 26 (2014) No. 25, p.4279–4285.

Google Scholar

[7] Y. Yang, L. Li, G.D. Ruan, H.L. Fei, C.S. Xiang, X.J. Fan and J.M. Tour: ACS Nano, Vol. 8 (2014) No. 9, p.9622–9628.

Google Scholar

[8] M S Balogun, W Qiu and W Wang: Journal of Materials Chemistry A, Vol. 3 (2015) No. 4, p.1364–1387.

Google Scholar

[9] X. Zhang, X.Z. Sun, Y. Chen, D.C. Zhang and Y.W. Ma: Mater. Lett, Vol. 68 (2012) p.336–339.

Google Scholar

[10] R.R. Salunkhe, J.J. Lin, V. Malgras, S.X. Dou, J.H. Kim and Y. Yamauchi: Nano Energy, Vol. 11 (2015) No. 59, p.211–218.

Google Scholar

[11] X.C. Li, W. Sun, L.Q. Wang, Y.D. Qi, T.M. Guo, X.H. Zhao and X.B. Yan: RSC Adv. Vol. 11 (2015) No. 5, p.7976–7985.

Google Scholar

[12] J. Yan, T. Wei, B. Shao, F.Q. Ma, Z.J. Fan, M.L. Zhang, C. Zhang, Y.C. Shang, W.Z. Qian and F. Wei: Carbon Vol. 48 (2010) No. 6, p.1731.

Google Scholar

[13] M.S. Wu and H.H. Hsieh: Electro chim. Acta, Vol. 53 (2008) No. 8, p.3427–3435.

Google Scholar

[14] B. Zhao, J.S. Song, P. Liu, W.W. Xu, T. Fang, Z. Jiao, H.J. Zhang and Y. Jiang: J. Mater. Chem, Vol. 21 (2011) No. 46, p.18792–18798.

Google Scholar

[15] J.T. Zhang, S. Liu, G.L. Pan, G.R. Li and X.P. Gao: J. Mater. Chem, A, Vol. 2 (2014) No. 5, p.1524–1529.

Google Scholar