Electrochemical Performance of Spherical Li3V2(PO4)3/C Synthesized by Spray Drying Method

Article Preview

Abstract:

Spherical Li3V2(PO4)3/C cathode materials have been successfully synthesized by a spray drying method. The structure and morphology of the cathode materials are characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM) and thermogravimetric (TG) analysis. The results show that synthesized monoclinic Li3V2(PO4)3 with high purities exhibits spherical morphology, in favor of enhancing the capacities and cycling stability of Li3V2(PO4)3/C cathode materials for lithium-ion battery. The Li3V2(PO4)3/C cathode materials sintered at 750 °C present best electrochemical performance among all the samples. It exhibits high initial discharge capacities of 99.2 mAhg-1 and capacity retention of 93.6% after 200 cycles at a rate of 1C within a voltage range of 3.0–4.3 V.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

738-743

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. Dunn, H. Kamath, J.M. Tarascon: Science, Vol. 334 (2011) No. 6058, p.928.

Google Scholar

[2] P. Prahasini, R. Subadevi, F.M. Wang, W.R. Liu, M. Sivakumar, L.V.B. Maggay: Journal of Materials Science Materials in Electronics, Vol. 27 (2015) No. 27, p.3292.

DOI: 10.1007/s10854-015-4157-y

Google Scholar

[3] Y.Q. Qiao, J.P. Tu, X.L. Wang, D. Zhang, J.Y. Xiang, Y.J. Mai, C.D. Gu: Journal of Power Sources, Vol. 196 (2011) No. 18, p.7715.

Google Scholar

[4] W.C. Duan, Z. Hu, K. Zhang, F.Y. Cheng, Z.L. Tao, J. Chen: Nanoscale, Vol. 5 (2013) No. 14, p.6485.

Google Scholar

[5] S.K. Zhong, Z.L. Yin, Z.X. Wang, H.J. Guo, X.H. Li: Transactions of Nonferrous Metals Society of China, Vol. 16 (2006) No. S2, p.708.

Google Scholar

[6] L. L Zhang, G. Peng, G. Liang, P.C. Zhang, Z.H. Wang, Y. Jiang, Y.H. Huang, H. Lin: Electrochimica Acta, Vol. 90 (2012) No. 5, p.433.

Google Scholar

[7] W.J. Hao, H.H. Zhan, J. Yu: Materials Letters, Vol. 83 (2012) No. 23, p.121.

Google Scholar

[8] S. Jing, X.L. Wu, J.S. Lee, J. Kim, Y.G. Guo: J. mater. chem. a, Vol. 1 (2013) No. 1, p.2508.

Google Scholar

[9] T. Jiang, F. Du, K.J. Zhang, Y.J. Wei, Z. Li, C.Z. Wang, G. Chen: Solid State Sciences, Vol. 12 (2010) No. 9, p.1672.

Google Scholar

[10] R.H. Wang, S.H. Xiao, X.H. Li, J.X. Wang, H.J. Guo, F.X. Zhong: Journal of Alloys & Compounds, Vol. 575 (2013) No. 10, p.268.

Google Scholar

[11] Y.Z. Dong, Y.M. Zhao, H. Duan: Journal of Electroanalytical Chemistry, Vol. 660 (2011) No. 1, p.14.

Google Scholar

[12] J. Xu, G. Chen, H.J. Zhang, W. Zheng, Y. Li: Journal of Applied Electrochemistry, Vol. 45 (2015) No. 2, p.123.

Google Scholar

[13] L.Q. Mai, S. Li, Y.F. Dong, Y.L. Zhao, Y.Z. Luo, H.M. Xu: Nanoscale, Vol. 5 (2013) No. 11, p.4864.

Google Scholar

[14] D.L. Li, M. Tian, R. Xie, Q. Li, X.Y. Fan, L. Gou, P. Zhao, S.L. Ma, Y.X. Shi, H.T. Yong: Nanoscale, Vol. 6 (2014) No. 6, p.3302.

Google Scholar

[15] X.G. Yin, K.L. Huang, S.Q. Liu, H.Y. Wang, H. Wang: Journal of Power Sources, Vol. 13 (2010) No. 13, p.4308.

Google Scholar

[16] Q. Kuang, Y.M. Zhao, Z.Y. Liang: Journal of Power Sources, Vol. 196 (2011) No. 23, p.10169.

Google Scholar

[17] X.H. Rui, N. Ding, J. Liu, C. Li, C.H. Chen: Electrochimica Acta, Vol. 55 (2010) No. 7, p.2384.

Google Scholar

[18] X.H. Rui, C. Li, J. Liu, T. Cheng, C.H. Chen: Electrochimica Acta, Vol. 55 (2010) No. 22, p.6761.

Google Scholar

[19] H.W. Liu, C.X. Cheng, X.T. Huang, J.L. Li: Electrochimica Acta, Vol. 55 (2010) No. 28, p.8461.

Google Scholar

[20] Y.Q. Qiao, J.P. Tu, J.Y. Xiang, X.L. Wang, Y.J. Mai, D. Zhang, W.L. Liu: Electrochimica Acta, Vol. 56 (2011) No. 11, p.4139.

Google Scholar

[21] L. Wu, S.K. Zhong, J.J. Lu, F. Lv, J.Q. Liu: Materials Letters, Vol. 115 (2014) No. 2, p.60.

Google Scholar

[22] B. Zhang, J.C. Zheng: Electrochimica Acta, Vol. 67 (2012) No. 1, p.55.

Google Scholar

[23] X.P. Zhang, H.J. Guo, X.H. Li, Z.X. Wang, L. Wu: Electrochimica Acta, Vol. 64 (2012) No. 1, p.65.

Google Scholar

[24] F. Wu, F. Wang, C. Wu, Y. Bai: Journal of Alloys & Compounds, Vol. 513 (2012) No. 3, p.236.

Google Scholar

[25] Q.L. Wei, Q.Y. An, D.D. Chen, L.Q. Mai, S.Y. Chen, Y.L. Zhao, K.M. Hercule, L. Xu, M.K. Aamir, Q.J. Zhang: Nano Letters, Vol. 14 (2014) No. 2, p.1042.

Google Scholar

[26] A.S. Andersson, J.O. Thomas: Journal of Power Sources, Vol. 97 (2001) No. 3, p.498.

Google Scholar

[27] X.Y. Wang, S.Y. Yin, K.L. Zhang, Y.X. Zhang: Journal of Alloys & Compounds, Vol. 486 (2009) No. s1-2, p. L5.

Google Scholar

[28] S.T. Yang, Y.X. Liu, Y.H. Yin, H. Wang, T. Wang: Chinese Journal of Inorganic Chemistry, Vol. 23 (2007) No. 7, p.1165.

Google Scholar