Metal-Organic Frameworks/Carboxyl Graphene Derived Porous Carbon as a Promising Supercapacitor Electrode Material

Article Preview

Abstract:

A UiO-66-NO2/carboxyl graphene composite (UiO-66-NO2/CXYG) was synthesized using a simple solvothermal reaction. The composite was then calcined to obtain series of all-carbon mixture of carbonized UiO-66-NO2/reduced carboxyl graphene (CUiO-66-NO2/rCXYG). The obtained carbon materials were characterized by X-ray diffraction (XRD), nitrogen sorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM). Then their electrochemical properties were systematically tested. The results indicated that UiO-66-NO2/CXYG derived Carbon-700 as an electrode for the electrochemical capacitor exhibited a high specific capacitance of 302 F g-1 in 6 M KOH at a current density of 0.15 A g-1, even 170 F g-1 at a high current of 10 A g-1 and good stability (retaining 94% capacitance after 5000 cycles). These UiO-derived porous carbon materials may offer a new insight into the various fields, such as fuel cells, supercapacitors and lithium batteries.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

756-763

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Hao, L; Li, X; Zhi, L, Carbonaceous Electrode Materials for Supercapacitors. Advanced Materials 2013, 25(28), 3899-3904.

DOI: 10.1002/adma.201301204

Google Scholar

[2] Seo, D. H; Han, Z. J; Kumar, S; Ostrikov, K, Structure-Controlled, Vertical Graphene-Based, Binder-Free Electrodes from Plasma-Reformed Butter Enhance Supercapacitor Performance. Advanced Energy Materials 2013, 3(10), 1316-1323.

DOI: 10.1002/aenm.201300431

Google Scholar

[3] Zhao, Y; Hu, C; Hu, Y; Cheng, H; Shi, G; Qu, L, A Versatile, Ultralight, Nitrogen-Doped Graphene Framework. Angewandte Chemie-International Edition 2012, 51(45), 11371-11375.

DOI: 10.1002/anie.201206554

Google Scholar

[4] Hou, L; Lian, L; Li, D; Pang, G; Li, J; Zhang, X; Xiong, S; Yuan, C, Mesoporous N-containing Carbon Nanosheets towards High-performance Electrochemical Capacitors. Carbon 2013, 64, 141-149.

DOI: 10.1016/j.carbon.2013.07.045

Google Scholar

[5] Jiang, H. L; Liu, B; Lan, Y. Q; Kuratani, K; Akita, T; Shioyama, H; Zong, F; Xu, Q, From Metal-Organic Framework to Nanoporous Carbon: Toward a Very High Surface Area and Hydrogen Uptake. Journal of the American Chemical Society 2011, 133(31), 11854-11857.

DOI: 10.1021/ja203184k

Google Scholar

[6] Almasoudi, A; Mokaya, R, Preparation and Hydrogen Storage Capacity of Templated and Activated Carbons Nanocast from Commercially Available Zeolitic Imidazolate Framework. Journal of Materials Chemistry 2012, 22(1), 146-152.

DOI: 10.1039/c1jm13314d

Google Scholar

[7] Wang, Q; Xia, W; Guo, W; An, L; Xia, D; Zou, R, Functional Zeolitic-Imidazolate-Framework- Templated Porous Carbon Materials for CO2 Capture and Enhanced Capacitors. Chemistry-an Asian Journal 2013, 8(8), 1879-1885.

DOI: 10.1002/asia.201300147

Google Scholar

[8] Pachfule, P; Biswal, B. P; Banerjee, R, Control of Porosity by Using Isoreticular Zeolitic Imidazolate Frameworks (IRZIFs) as a Template for Porous Carbon Synthesis. Chemistry-a European Journal 2012, 18(36), 11399-11408.

DOI: 10.1002/chem.201200957

Google Scholar

[9] Zhang, P; Sun, F; Xiang, Z; Shen, Z; Yun, J; Cao, D, ZIF-derived in Situ nitrogen-doped Porous Carbons as Efficient Metal-free Electrocatalysts for Oxygen Reduction Reaction. Energy & Environmental Science 2014, 7(1), 442-450.

DOI: 10.1039/c3ee42799d

Google Scholar

[10] Lefevre, M; Proietti, E; Jaouen, F; Dodelet, J. P, Iron-Based Catalysts with Improved Oxygen Reduction Activity in Polymer Electrolyte Fuel Cells. Science 2009, 324(5923), 71-74.

DOI: 10.1126/science.1170051

Google Scholar

[11] Su, Y; Liu, Y; Liu, P; Wu, D; Zhuang, X; Zhang, F; Feng, X, Compact Coupled Graphene and Porous Polyaryltriazine-Derived Frameworks as High Performance Cathodes for Lithium-Ion Batteries. Angewandte Chemie-International Edition 2015, 54(6), 1812-1816.

DOI: 10.1002/anie.201410154

Google Scholar

[12] Wu, H. B; Wei, S; Zhang, L; Xu, R; Hng, H. H; Lou, X. W, Embedding Sulfur in MOF-Derived Microporous Carbon Polyhedrons for Lithium-Sulfur Batteries. Chemistry-a European Journal 2013, 19(33), 10804-10808.

DOI: 10.1002/chem.201301689

Google Scholar

[13] Xu, G; Ding, B; Shen, L; Nie, P; Han, J; Zhang, X, Sulfur Embedded in Metal organic Framework-derived Hierarchically Porous Carbon Nanoplates for High Performance Lithium-sulfur Battery. Journal of Materials Chemistry A 2013, 1(14), 4490-4496.

DOI: 10.1039/c3ta00004d

Google Scholar

[14] Ma, C; Shao, X; Cao, D, Nitrogen-doped Graphene Nanosheets as Anode Materials for Lithium Ion Batteries: a First-principles Study. Journal of Materials Chemistry 2012, 22(18), 8911-8915.

DOI: 10.1039/c2jm00166g

Google Scholar

[15] Hu, M; Reboul, J; Furukawa, S; Torad, N. L; Ji, Q; Srinivasu, P; Ariga, K; Kitagawa, S; Yamauchi, Y, Direct Carbonization of Al-Based Porous Coordination Polymer for Synthesis of Nanoporous Carbon. Journal of the American Chemical Society 2012, 134(6), 2864-2867.

DOI: 10.1021/ja208940u

Google Scholar

[16] Zhong, H. X; Wang, J; Zhang, Y. W; Xu, W. L; Xing, W; Xu, D; Zhang, Y. F; Zhang, X. B, ZIF-8 Derived Graphene-Based Nitrogen-Doped Porous Carbon Sheets as Highly Efficient and Durable Oxygen Reduction Electrocatalysts. Angewandte Chemie International Edition 2014, 53(51), 14235-14239.

DOI: 10.1002/anie.201408990

Google Scholar

[17] Liu, S; Xiang, Z; Hu, Z; Zheng, X; Cao, D, Zeolitic Imidazolate Framework-8 as a Luminescent Material for the Sensing of Metal Ions and Small Molecules. Journal of Materials Chemistry 2011, 21(18), 6649-6653.

DOI: 10.1039/c1jm10166h

Google Scholar

[18] Banerjee, A; Gokhale, R; Bhatnagar, S; Jog, J; Bhardwaj, M; Lefez, B; Hannoyer, B; Ogale, S, MOF Derived Porous Carbon-Fe3O4 Nanocomposite as a High Performance, Recyclable Environmental Superadsorbent. Journal of Materials Chemistry 2012, 22(37), 19694-19699.

DOI: 10.1039/c2jm33798c

Google Scholar

[19] X. Zhao, B. Xiao, A.J. Fletcher, K.M. Thomas, D. Bradshaw, M.J. Rosseinsky, Hysteretic Adsorption and Desorption of Hydrogen by Nanoporous Metal-organic Frameworks. Science, 2004, 306(5698), 1012-1015.

DOI: 10.1126/science.1101982

Google Scholar

[20] Chaikittisilp, W; Hu, M; Wang, H; Huang, H. S; Fujita, T; Wu, K. C. W; Chen, L. C; Yamauchi, Y; Ariga, K, Nanoporous Carbons through Direct Carbonization of a Zeolitic Imidazolate Framework for Supercapacitor Electrodes. Chemical Communications 2012, 48(58), 7259-7261.

DOI: 10.1039/c2cc33433j

Google Scholar

[21] Mo, S; Sun, Z; Huang, X; Zou, W; Chen, J; Yuan, D, Synthesis, Characterization and Supercapacitive Properties of Hierarchical Porous Carbons. Synthetic Metals 2012, 162(1-2), 85-88.

DOI: 10.1016/j.synthmet.2011.11.015

Google Scholar

[22] Su, P; Jiang, L; Zhao, J; Yan, J; Li, C; Yang, Q, Mesoporous Graphitic Carbon Nanodisks Fabricated via Catalytic Carbonization of Coordination Polymers. Chemical Communications 2012, 48(70), 8769-8771.

DOI: 10.1039/c2cc34234k

Google Scholar

[23] Kim, T. K; Lee, K. J; Cheon, J. Y; Lee, J. H; Joo, S. H; Moon, H. R, Nanoporous Metal Oxides with Tunable and Nanocrystalline Frameworks via Conversion of Metal-Organic Frameworks. Journal of the American Chemical Society 2013, 135(24), 8940-8946.

DOI: 10.1021/ja401869h

Google Scholar

[24] Zhang, P; Sun, F; Shen, Z; Cao, D, ZIF-derived Porous Carbon: a Promising Supercapacitor Electrode Material. Journal of Materials Chemistry A 2014, 2(32), 12873-12880.

DOI: 10.1039/c4ta00475b

Google Scholar

[25] Chaikittisilp, W; Ariga, K; Yamauchi, Y, A New Family of Carbon Materials: Synthesis of MOF-derived Nanoporous Carbons and Their Promising Applications. Journal of Materials Chemistry A 2013, 1(1), 14-19.

DOI: 10.1039/c2ta00278g

Google Scholar

[26] Wang, J; Sun, X, Understanding and Recent Development of Carbon Coating on LiFePO4 Cathode Materials for Lithium-ion Batteries. Energy & Environmental Science 2012, 5(1), 5163-5185.

DOI: 10.1039/c1ee01263k

Google Scholar

[27] Wen, P; Li, Z; Gong, P; Sun, J; Wang, J; Yang, S, Design and Fabrication of Carbonized rGO/CMOF-5 Hybrids for Supercapacitor Applications. RSC Advances 2016, 6(16), 13264-13271.

DOI: 10.1039/c5ra27893g

Google Scholar

[28] Abid, H. R; Ang, H. M; Wang, S, Effects of Ammonium Hydroxide on the Structure and Gas Adsorption of Nanosized Zr-MOFs (UiO-66). Nanoscale 2012, 4(10), 3089-3094.

DOI: 10.1039/c2nr30244f

Google Scholar

[29] Jasuja, H; Peterson, G. W; Decoste, J. B; Browe, M. A; Walton, K. S, Evaluation of MOFs for Air Purification and Air Quality Control Applications: Ammonia Removal from Air. Chemical Engineering Science 2015, 124, 118-124.

DOI: 10.1016/j.ces.2014.08.050

Google Scholar

[30] Rada, Z. H; Abid, H. R; Sun, H; Wang, S, Bifunctionalized Metal Organic Frameworks, UiO-66-NO2-N (N = -NH2, -(OH)2, -(COOH)2), for Enhanced Adsorption and Selectivity of CO2 and N2. Journal of Chemical And Engineering Data 2015, 60(7), 2152-2161.

DOI: 10.1021/acs.jced.5b00229

Google Scholar

[31] Wang, Q; Yan, J; Wang, Y; Wei, T; Zhang, M; Jing, X; Fan, Z, Three-dimensional Flower-like and Hierarchical Porous Carbon Materials as High-rate Performance Electrodes for Supercapacitors. Carbon 2014, 67, 119-127.

DOI: 10.1016/j.carbon.2013.09.070

Google Scholar

[32] Zhu, Y; Murali, S; Stoller, M. D; Ganesh, K. J; Cai, W; Ferreira, P. J; Pirkle, A; Wallace, R. M; Cychosz, K. A; Thommes, M; Su, D; Stach, E. A; Ruoff, R. S, Carbon-Based Supercapacitors Produced by Activation of Graphene. Science 2011, 332(6037), 1537-1541.

DOI: 10.1126/science.1200770

Google Scholar