Peparation of 20 wt.% Pt0.5Pd0.5/C Nanoelectrocatalysts by Electroless and their Electrocatalytic Properties

Article Preview

Abstract:

This work presents investigations on preparation of 20 wt. % Pt0.5Pd0.5/C nanoelectrocatalysts by electroless and their electrocatalytic properties. The 20 wt. % Pt0.5Pd0.5/C nanoelectrocatalysts were prepared by electroless successfully. The optimum experimental conditions of the main effect factors in preparing the PtPd nanoelectrocatalysts are [Pt2+ or Pd2+] =2-10g/L, [HCHO] =10-20g/L, temperature: 40-60°C, the dosage of protection reagent: 1-3 % of the platinum and palladium content, the agitation rate 400-500r/min. The characterization of 20 wt. % Pt0.5Pd0.5/C was performed with cyclic voltammetry (CV) and transmission electron microscope (TEM), respectively. Particles of PtPd are distributed symmetrically on C by TEM, of which are very small and the average granularity is less than 3nm. The nanoelectrocatalysts have high stabilization and lots of catalysis nuclei through CV.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

764-769

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. A. Starz, E. Auer, T. Lehmann, R. Zuber: J. Power Sources, Vol. 84 (1999), pp.167-172.

Google Scholar

[2] A. Brouzgou, S.Q. Song and P. Tsiakaras: Appl. Catal., B: Environ., Vol. 127 (2012), P. 371-388.

Google Scholar

[3] S. Sharma and B. G. Pollet: J. Power Sources, Vol. 208 (2012), P. 96-119.

Google Scholar

[4] T. Lim, O.H. Kim, Y.E. Sung, H.J. Kim, H.N. Lee and Y.H. Cho, O.J. Kwon: J. Power Sources, Vol. 316 (2016), P. 124-131.

Google Scholar

[5] W. Zhang, M. Wang, J. Chen, T. Romeo, A. T. Harris and A. I. Minett: Electrochem. Commun., Vol. 34 (2013), P. 73-76.

Google Scholar

[6] Y. Tang, H. Zhang, H. Zhong, T. Xu and H. Jin: J. Power Sources, Vol. 196 (2011), P. 3523-3529.

Google Scholar

[7] R. Lin, C. Cao, T. Zhao, Z. Huang, B. Li, A. Wieckowski and J. Ma: J. Power Sources, Vol. 223 (2013), P. 190-198.

Google Scholar

[8] W. Li, Z. Chen, L. Xu and Y. Yan: J. Power Sources, Vol. 195 (2010) No. 9, P. 2534-2540.

Google Scholar

[9] D. Puthusseri, T. T. Baby, V. B. Parambhath, R. Natarajan and R. Sundara: Int. J. Hydrogen Energy, Vol. 38 (2013) No. 15, P. 6460-6468.

DOI: 10.1016/j.ijhydene.2013.02.094

Google Scholar

[10] B. Li and S. H. Chan: Int. J. Hydrogen Energy, Vol. 38 (2013) No. 8, P. 338-3345.

Google Scholar

[11] J. Zhao, K. Jarvis, P. Ferreira and A. Manthiram: J. Power Sources, Vol. 196 (2011), P. 4515-4523.

Google Scholar

[12] J.J. Salvador-Pascual, V. Collins-Martínez, A. López-Ortíz and O. Solorza-Feria: J. Power Sources, Vol. 195 (2010) No. 11, P. 3374-3379.

DOI: 10.1016/j.jpowsour.2009.12.045

Google Scholar

[13] N. Ruiz, A.R. Pierna and M. Sanchez: Int. J. Hydrogen Energy, Vol. 39 (2014) No. 10, P. 5319-5325.

Google Scholar

[14] E. Auer, A. Freund, J. Pietsch and T. Tacke: Appl. Catal. A: Gen., Vol. 173 (1998), pp.259-271.

Google Scholar