Preparation and Electrochemical Properties of LaMnO3 Powder as a Supercapacitor Electrode Material

Article Preview

Abstract:

The structural and electrochemical properties of lanthanum manganate (LaMnO3) powder prepared by the sol-gel method are researched in this article. The powder calcined at 600 °C showed amorphous, and the powder calcined at 700-800 °C showed the pure phase of the LaMnO3. The grains with the size of about 80-120 nm were agglomerating together. Cyclic voltammetry and galvanostatic charge-discharge were used to characterize the electrochemical properties in alkaline environment. The electrochemical properties calcined at 700 °C showed a specific capacitance of 73 F/g at the current density of 0.5 A/g. The raw materials for preparing the LaMnO3 powder are cheap, and the operation method is simple.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

698-704

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Li, F. Liu, J.P. Cheng, J. Ying and X.B. Zhang: Journal of Alloys and Compounds, Vol. 635 (2015), pp.225-232.

Google Scholar

[2] C.G. Liu, Z.N. Yu, D. Neff, A. Zhamu and B.Z. Zhamu: Nano Lett, Vol. 10 (2010) N. 12, pp.4863-4868.

DOI: 10.1021/nl102661q

Google Scholar

[3] G. Wang, L. Zhang and J. Zhang: Chem Soc Rev, Vol. 41 (2012) N. 2, pp.797-828.

Google Scholar

[4] B.G.S. Raj, A.M. Asiri, J.J. Wu and S. Anandan: Journal of Alloys and Compounds, Vol. 636 (2015), pp.234-240.

Google Scholar

[5] Y. Li, N.Q. Zhao, C.S. Shi, E.Z. Liu and C.N. He: The Journal of Physical Chemistry C, Vol. 116 (2012) N. 48, pp.25226-25232.

Google Scholar

[6] M. Winter and R.J. Brodd: American Chemical Society, Vol. 105 (2005) N. 3, pp.1021-1021.

Google Scholar

[7] G.R. Li, H. Xu, X.F. Lu, J.X. Feng, Y.X. Tong and C.Y. Su: Nanoscale, Vol. 5 (2013) N. 10, pp.4056-4069.

Google Scholar

[8] Z.B. Wu, X.L. Pu, Y.R. Zhu, M.J. Jing, Q.Y. Chen, X.N. Jia and X.B. Ji: Journal of Alloys and Compounds, Vol. 632 (2015), pp.208-217.

Google Scholar

[9] M. Li, S.H. Xu, Y.P. Zhu, P.X. Yang, L.W. Wang and P.K. Chu: Journal of Alloys and Compounds, Vol. 589 (2014), pp.364-371.

Google Scholar

[10] M. Noked, A. Soffer and D. Aurbach: Journal of Solid State Electrochemistry, Vol. 15 (2011) N. 7-8, pp.1563-1578.

Google Scholar

[11] C.L. Wang, F.T. Li, Y.A. Wang, H.L. Qu, X.L. Yi, Y. Lu, Y. Qiu, Z.J. Zou, B.H. Yu and Y.S. Luo: Journal of Alloys and Compounds, Vol. 634 (2015), pp.12-18.

Google Scholar

[12] Q. Wu, Y.X. Xu, Z.Y. Yao, A.R. Liu and G.Q. Shi: American Chemical Society, Vol. 4 (2010) N. 4, p.1963-(1970).

Google Scholar

[13] B. Senthilkumar, K.V. Sankar, C. Sanjeeviraja, and P.K. Selvan: Journal of Alloys and Compounds, Vol. 553 (2013), pp.350-357.

Google Scholar

[14] Q. Li, Z.L. Wang, G.R. Li, R. Guo, L.X. Ding and Y.X. Tong: Nano Letters, Vol. 12 (2012) N. 7, pp.3803-3807.

Google Scholar

[15] R.R. Salunkhe, K. Jang, H. Yu, S. Yu, T. Ganesh, S.H. Han and H. Ahn: Journal of Alloys and Compounds, Vol. 509 (2011) N. 23, pp.6677-6682.

DOI: 10.1016/j.jallcom.2011.03.136

Google Scholar

[16] W.L. Yang, Z. Gao, J. Ma, X.M. Zhang and J. Wang: Journal of Alloys and Compounds, Vol. 611 (2014), pp.171-178.

Google Scholar

[17] L.X. Wang, D. Deng, S.O. Salley and K.Y.S. Ng: Journal of Materials Science, Vol. 50 (2015) N. 19, pp.6313-6320.

Google Scholar

[18] A. Bello, K. Makgopa, M. Fabiane, D. Dodoo-Ahrin, K.I. Ozoemena and N. Manyala: Journal of Materials Science, Vol. 48 (2013) N. 19, pp.6707-6712.

DOI: 10.1007/s10853-013-7471-x

Google Scholar

[19] A.N. Naveen, P. Manimaran and S. Selladurai: Journal of Materials Science-Materials in Electronics, Vol. 26 (2015) N. 11, pp.8988-9000.

Google Scholar

[20] J.T. Mefford, W.G. Hardin, S. Dai, K.P. Johnston and K.J. Stevenson: Nature Materials, Vol. 13 (2014) N. 7, pp.726-732.

Google Scholar

[21] M.M. Yao, Z.H. Hu, Z.J. Xu and Y.F. Liu: Journal of Alloys and Compounds, Vol. 644 (2015), pp.721-728.

Google Scholar

[22] M.M. Wang, J.Y. Xue, F.M. Zhang, W.L. Ma and H.T. Cu: Journal of Materials Science, Vol. 50 (2015) N. 6, pp.2422-2428.

Google Scholar

[23] N. Padmanathan and S. Selladurai: Inoics, Vol. 19 (2013) N. 11, pp.1535-1544.

Google Scholar

[24] S. Chen, J.W. Zhu, H. Zhou and X. Wang: Rsc Advances, Vol. 1 (2011) N. 3, pp.484-489.

Google Scholar

[25] A.G. Xiao, S.B. Zhou, C.G. Zuo, Y.B. Zhuan and X. Ding: Materials Research Bulletin, Vol. 70 (2015), pp.200-203.

Google Scholar

[26] J.J. Deng, J.C. Deng, Z.L. Liu, H.R. Deng and B. Liu: Journal of Materials Science, Vol. 44 (2009) N. 11, pp.2828-2835.

Google Scholar

[27] Y. Liu, Y. Zhang, G.H. Ma, Z. Wang, K.Y. Liu and H.T. Liu: Electrochimica Acta, Vol. 88 (2013), pp.519-525.

Google Scholar

[28] Q. Wu, Y.X. Xu, Z.Y. Yao, A.R. Liu and G.Q. Shi: Acs Nano, Vol. 4 (2010) N. 4, p.1963-(1970).

Google Scholar