Facile Preparation of Gold Nanoparticle Modified Pencil Graphite Electrode

Article Preview

Abstract:

The purpose of this research was to prepare gold nanoparticle (AuNP) modified disposable pencil graphite electrode (PGE). The AuNP was prepared using trisodium citrate reduced gold ion solution. The PGE surface modification was carried out by immersing a bare PGE in poly (diallyldimethylammonium chloride) (PDDA) and then in AuNP solution at room temperature. The characterization of the bare and modified PGE surfaces was carried out using field emission scanning electron microscopy (FESEM) and cyclic voltammetry in the presence of 0.1 M NaOH. The electrochemical behavior of the modified PGE electrode was investigated using cyclic voltammetry, and impedance spectroscopy in the presence of 5 mM [Fe (CN)6]3-/4- redox probe solution. The obtained result indicated that the modification of AuNP on the PGE surface provided a good electrochemical signal. In order to obtain more sensitive electrochemical signals, the effect of adsorbed AuNP on the PGE surface was also studied.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

177-182

Citation:

Online since:

February 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Erdem, H. Karadeniz, A. Caliskan, Single-walled carbon nanotubes modified graphite electrodes for electrochemical monitoring of nucleic acids and biomolecular interactions, Electroanal. 21(3-5) (2009) 464-471.

DOI: 10.1002/elan.200804422

Google Scholar

[2] L. Rassaei, F. Marken, M. Sillanpää, M. Amiri, C. M. Cirtiu, M. Sillanpää, Nanoparticles in electrochemical sensors for environmental monitoring, Trends Anal. Chem. 30(11) (2011) 1704-1715.

DOI: 10.1016/j.trac.2011.05.009

Google Scholar

[3] S. Guo, S. Dong, Biomolecule-nanoparticle hybrids for electrochemical biosensors, Trends Anal. Chem. 28(1) (2009) 96-109.

DOI: 10.1016/j.trac.2008.10.014

Google Scholar

[4] M. A. Aziz, A. N. Kawde, Gold nanoparticle-modified graphite pencil electrode for the high-sensitivity detection of hydrazine, Talanta, 115 (2013) 214-221.

DOI: 10.1016/j.talanta.2013.04.038

Google Scholar

[5] X. Bai, S. Wang, S. Xu, L. Wang, Luminescent nanocarriers for simultaneous drug or gene delivery and imaging tracking, Trends Anal. Chem. 73 (2015) 54-63.

DOI: 10.1016/j.trac.2015.04.027

Google Scholar

[6] C. Fenzl, T. Hirsch, A. J. Baeumner, Nanomaterials as versatile tools for signal amplification in (bio)analytical applications, Trends Anal. Chem. 79 (2016) 306-316.

DOI: 10.1016/j.trac.2015.10.018

Google Scholar

[7] S. Teepoo, P. Chumsaeng, P. Nethan, W. Prueprang, P. Tumsae, Highly sensitive pencil-based renewable biosensor for hydrogen peroxide detection with a novel bionanomultilayer, Int. J. Electrochem. Sci., 7(5) (2012) 4645-4656.

DOI: 10.1016/s1452-3981(23)19569-1

Google Scholar

[8] T. Vural, F. Kuralay, C. Bayram, S. Abaci, E. B. Denkbas, Preparation and physical/electrochemical characterization of carbon nanotube–chitosan modified pencil graphite electrode, App. Surf. Sci. 257(2) (2010) 622-627.

DOI: 10.1016/j.apsusc.2010.07.048

Google Scholar

[9] F. Kuralay, T. Vural, C. Bayram, E. B. Denkbas, S. Abaci, Carbon nanotube–chitosan modified disposable pencil graphite electrode for Vitamin B12 analysis, Colloids Surf. B Biointerfaces 87(1) (2011) 18-22.

DOI: 10.1016/j.colsurfb.2011.03.030

Google Scholar

[10] N. German, A. Ramanavicius, A. Ramanaviciene, Electrochemical deposition of gold nanoparticles on graphite rod for glucose biosensing, Sens. Actuators B 203 (2014) 25-34.

DOI: 10.1016/j.snb.2014.06.021

Google Scholar

[11] J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot, A. Plech, Turkevich method for gold nanoparticle synthesis revisited, J. Phys. Chem. B 110(32) (2006) 15700-15707.

DOI: 10.1021/jp061667w

Google Scholar

[12] W. Haiss, N. T. K. Thanh, J. Aveyard, D. G. Fernig, Determination of size and concentration of gold nanoparticles from UV−Vis Spectra, Anal. Chem. 79(11) (2007) 4215-4221.

DOI: 10.1021/ac0702084

Google Scholar

[13] Z. Gao, Y. Qu, T. Li, N. K. Shrestha, Y. Y. Song, Development of amperometric glucose biosensor based on prussian blue functionlized TiO2 nanotube arrays, Sci. Rep. 4 (2014) 4: 6891 1-7.

DOI: 10.1038/srep06891

Google Scholar