[1]
A. Erdem, H. Karadeniz, A. Caliskan, Single-walled carbon nanotubes modified graphite electrodes for electrochemical monitoring of nucleic acids and biomolecular interactions, Electroanal. 21(3-5) (2009) 464-471.
DOI: 10.1002/elan.200804422
Google Scholar
[2]
L. Rassaei, F. Marken, M. Sillanpää, M. Amiri, C. M. Cirtiu, M. Sillanpää, Nanoparticles in electrochemical sensors for environmental monitoring, Trends Anal. Chem. 30(11) (2011) 1704-1715.
DOI: 10.1016/j.trac.2011.05.009
Google Scholar
[3]
S. Guo, S. Dong, Biomolecule-nanoparticle hybrids for electrochemical biosensors, Trends Anal. Chem. 28(1) (2009) 96-109.
DOI: 10.1016/j.trac.2008.10.014
Google Scholar
[4]
M. A. Aziz, A. N. Kawde, Gold nanoparticle-modified graphite pencil electrode for the high-sensitivity detection of hydrazine, Talanta, 115 (2013) 214-221.
DOI: 10.1016/j.talanta.2013.04.038
Google Scholar
[5]
X. Bai, S. Wang, S. Xu, L. Wang, Luminescent nanocarriers for simultaneous drug or gene delivery and imaging tracking, Trends Anal. Chem. 73 (2015) 54-63.
DOI: 10.1016/j.trac.2015.04.027
Google Scholar
[6]
C. Fenzl, T. Hirsch, A. J. Baeumner, Nanomaterials as versatile tools for signal amplification in (bio)analytical applications, Trends Anal. Chem. 79 (2016) 306-316.
DOI: 10.1016/j.trac.2015.10.018
Google Scholar
[7]
S. Teepoo, P. Chumsaeng, P. Nethan, W. Prueprang, P. Tumsae, Highly sensitive pencil-based renewable biosensor for hydrogen peroxide detection with a novel bionanomultilayer, Int. J. Electrochem. Sci., 7(5) (2012) 4645-4656.
DOI: 10.1016/s1452-3981(23)19569-1
Google Scholar
[8]
T. Vural, F. Kuralay, C. Bayram, S. Abaci, E. B. Denkbas, Preparation and physical/electrochemical characterization of carbon nanotube–chitosan modified pencil graphite electrode, App. Surf. Sci. 257(2) (2010) 622-627.
DOI: 10.1016/j.apsusc.2010.07.048
Google Scholar
[9]
F. Kuralay, T. Vural, C. Bayram, E. B. Denkbas, S. Abaci, Carbon nanotube–chitosan modified disposable pencil graphite electrode for Vitamin B12 analysis, Colloids Surf. B Biointerfaces 87(1) (2011) 18-22.
DOI: 10.1016/j.colsurfb.2011.03.030
Google Scholar
[10]
N. German, A. Ramanavicius, A. Ramanaviciene, Electrochemical deposition of gold nanoparticles on graphite rod for glucose biosensing, Sens. Actuators B 203 (2014) 25-34.
DOI: 10.1016/j.snb.2014.06.021
Google Scholar
[11]
J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot, A. Plech, Turkevich method for gold nanoparticle synthesis revisited, J. Phys. Chem. B 110(32) (2006) 15700-15707.
DOI: 10.1021/jp061667w
Google Scholar
[12]
W. Haiss, N. T. K. Thanh, J. Aveyard, D. G. Fernig, Determination of size and concentration of gold nanoparticles from UV−Vis Spectra, Anal. Chem. 79(11) (2007) 4215-4221.
DOI: 10.1021/ac0702084
Google Scholar
[13]
Z. Gao, Y. Qu, T. Li, N. K. Shrestha, Y. Y. Song, Development of amperometric glucose biosensor based on prussian blue functionlized TiO2 nanotube arrays, Sci. Rep. 4 (2014) 4: 6891 1-7.
DOI: 10.1038/srep06891
Google Scholar