[1]
M. V. Rekharsky, Y. Inoue. Complexation thermodynamics of cyclodextrins. Chem. Rev. 98 (1998) 1875-(1917).
DOI: 10.1021/cr970015o
Google Scholar
[2]
A. R. Hedges. Industrial applications of cyclodextrins. Chem. Rev. 98 (1998) 2035-(2044).
Google Scholar
[3]
R. Breslow, S. D. Dong. Biomimetic reactions catalyzed by cyclodextrins and their derivatives. Chem. Rev. 98 (1998) 1997-(2011).
DOI: 10.1021/cr970011j
Google Scholar
[4]
H. J. Schneider, F. Hacket, V. Rudiger, H. Ikeda. NMR studies of cyclodextrins and cyclodextrin complexes. Chem. Rev. 98 (1998) 1755-1785.
DOI: 10.1021/cr970019t
Google Scholar
[5]
C. Folch-Cano, M. Yazdani-Pedram, C. Olea-Azar. Inclusion and functionalization of polymers with cyclodextrins: current applications and future prospects. Molecules. 19 (2014) 14066-14079.
DOI: 10.3390/molecules190914066
Google Scholar
[6]
B. Han, X. L. Liao, B. Yang. Targeted drug delivery systems based on cyclodextrins. Prog. Chem. 26 (2014) 1039-1049.
Google Scholar
[7]
D. Landy, I Mallard, A Ponchel, E Monflier, S Fourmentin. Remediation technologies using cyclodextrins: an overview. Environ. Chem. Lett. 10 (2012) 225-237.
DOI: 10.1007/s10311-011-0351-1
Google Scholar
[8]
M. A. Sanchez-Trujillo, E. Morillo, J. Villaverde, S. Lacorte. Comparative effects of several cyclodextrins on the extraction of PAHs from an aged contaminated soil. Environ Pollut. 178(2013) 52-58.
DOI: 10.1016/j.envpol.2013.02.029
Google Scholar
[9]
R. Chalassani, S. Vasudevan. Cyclodextrin-functionalized Fe3O4@TiO2: reusable, magnetic nanoparticles for photocatalytic degradation of endocrine-disrupting chemicals in water supplies. ACS Nano. 7 (2013) 4093-4104.
DOI: 10.1021/nn400287k
Google Scholar
[10]
H. M. Shen, H. B. Ji, H. K. Wu, H. X. Shi. Rencent advances in the immobilization of β-Cyclodextrin and their application. Chin. J. Org. Chem. 34 (2014) 1549-1572.
Google Scholar
[11]
Q. C. Chen, R. Zhang, J. Wang, X. H. Guo. Spherical particles of α-, β- and γ-cyclodextrin polymers and their capability for phenol removal. Mater. Lett. 79 (2012) 156-158.
DOI: 10.1016/j.matlet.2012.03.106
Google Scholar
[12]
S. T. Cai, M. Zhou, X. Qian. β-cyclodextrin modified hybrid magnetic nanoparticles as an adsorbent for phenol removal. Adv. Mater. Res. 1095 (2015) 63-66.
DOI: 10.4028/www.scientific.net/amr.1095.63
Google Scholar
[13]
M. Jug, J. Jablan, K. Koever. Thermodynamic study of inclusion complexes of zaleplon with natural and modified cyclodextrins. J. Incl. Phenom. Macro. 79 (2014) 391-400.
DOI: 10.1007/s10847-013-0362-6
Google Scholar
[14]
J. Li, C. L. Chen, Y. Zhao. Synthesis of water-dispersible Fe3O4@beta-cyclodextrin by plasma-induced grafting technique for pollutant treatment. Chem. Eng. J. 229 (2013): 296-303.
DOI: 10.1016/j.cej.2013.06.016
Google Scholar
[15]
M. Chen, L. Cui, C. H. Li. Adsorption, desorption and condensation of nitrobenzene solution from active carbon: A comparison of two cyclodextrins and two surfactants. J. Hazard. Mater. 162 (2009) 23-28.
DOI: 10.1016/j.jhazmat.2008.05.006
Google Scholar
[16]
C. Y. Shen, X. H. Yang, Y. Wang. Complexation of capsaicin with beta-cyclodextrins to improve pesticide formulations: effect on aqueous solubility, dissolution rate, stability and soil adsorption. J. Incl. Phenom. Macro. 72 (2012) 263-274.
DOI: 10.1007/s10847-011-9971-0
Google Scholar
[17]
A. Z. M. Badruddoza, J. W. Li, K. Hidajat. Selective recognition and separation of nucleosides using carboxymethyl-beta-cyclodextrin functionalized hybrid magnetic nanoparticles. Colloid Surface B. 92(2012) 223-231.
DOI: 10.1016/j.colsurfb.2011.11.042
Google Scholar