Preparation of β-Cyclodextrin Polymer by Inverse-Phase Suspension Polymerization and its Capability for Phenol Removal

Article Preview

Abstract:

β-Cyclodextrin polymer were prepared by inverse-phase suspension polymerization using epichlorohydrin (EPI) as crosslinker. The architecture has been characterized by Fourier transform infrared spectra (FT-IR) and thermogravimetric analysis (TGA), which confirmed that cyclodextrin polymer have been synthesized successfully. β-Cyclodextrin polymer (EPI-CD) can interact with a variety of hydrophobic compounds to form inclusion complexes, such as phenol. Experimental results indicated that the adsorption reached to 58.51umol/g under the initial concentration of 120mg/L at 298K. The adsorption isotherm was fitted to the Langmuir and Freundlich models. From the experimental data, it may be inferred that EPI-CD polymer was an effective adsorbent for the removal of phenol in wastewater treatment.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

195-199

Citation:

Online since:

February 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. V. Rekharsky, Y. Inoue. Complexation thermodynamics of cyclodextrins. Chem. Rev. 98 (1998) 1875-(1917).

DOI: 10.1021/cr970015o

Google Scholar

[2] A. R. Hedges. Industrial applications of cyclodextrins. Chem. Rev. 98 (1998) 2035-(2044).

Google Scholar

[3] R. Breslow, S. D. Dong. Biomimetic reactions catalyzed by cyclodextrins and their derivatives. Chem. Rev. 98 (1998) 1997-(2011).

DOI: 10.1021/cr970011j

Google Scholar

[4] H. J. Schneider, F. Hacket, V. Rudiger, H. Ikeda. NMR studies of cyclodextrins and cyclodextrin complexes. Chem. Rev. 98 (1998) 1755-1785.

DOI: 10.1021/cr970019t

Google Scholar

[5] C. Folch-Cano, M. Yazdani-Pedram, C. Olea-Azar. Inclusion and functionalization of polymers with cyclodextrins: current applications and future prospects. Molecules. 19 (2014) 14066-14079.

DOI: 10.3390/molecules190914066

Google Scholar

[6] B. Han, X. L. Liao, B. Yang. Targeted drug delivery systems based on cyclodextrins. Prog. Chem. 26 (2014) 1039-1049.

Google Scholar

[7] D. Landy, I Mallard, A Ponchel, E Monflier, S Fourmentin. Remediation technologies using cyclodextrins: an overview. Environ. Chem. Lett. 10 (2012) 225-237.

DOI: 10.1007/s10311-011-0351-1

Google Scholar

[8] M. A. Sanchez-Trujillo, E. Morillo, J. Villaverde, S. Lacorte. Comparative effects of several cyclodextrins on the extraction of PAHs from an aged contaminated soil. Environ Pollut. 178(2013) 52-58.

DOI: 10.1016/j.envpol.2013.02.029

Google Scholar

[9] R. Chalassani, S. Vasudevan. Cyclodextrin-functionalized Fe3O4@TiO2: reusable, magnetic nanoparticles for photocatalytic degradation of endocrine-disrupting chemicals in water supplies. ACS Nano. 7 (2013) 4093-4104.

DOI: 10.1021/nn400287k

Google Scholar

[10] H. M. Shen, H. B. Ji, H. K. Wu, H. X. Shi. Rencent advances in the immobilization of β-Cyclodextrin and their application. Chin. J. Org. Chem. 34 (2014) 1549-1572.

Google Scholar

[11] Q. C. Chen, R. Zhang, J. Wang, X. H. Guo. Spherical particles of α-, β- and γ-cyclodextrin polymers and their capability for phenol removal. Mater. Lett. 79 (2012) 156-158.

DOI: 10.1016/j.matlet.2012.03.106

Google Scholar

[12] S. T. Cai, M. Zhou, X. Qian. β-cyclodextrin modified hybrid magnetic nanoparticles as an adsorbent for phenol removal. Adv. Mater. Res. 1095 (2015) 63-66.

DOI: 10.4028/www.scientific.net/amr.1095.63

Google Scholar

[13] M. Jug, J. Jablan, K. Koever. Thermodynamic study of inclusion complexes of zaleplon with natural and modified cyclodextrins. J. Incl. Phenom. Macro. 79 (2014) 391-400.

DOI: 10.1007/s10847-013-0362-6

Google Scholar

[14] J. Li, C. L. Chen, Y. Zhao. Synthesis of water-dispersible Fe3O4@beta-cyclodextrin by plasma-induced grafting technique for pollutant treatment. Chem. Eng. J. 229 (2013): 296-303.

DOI: 10.1016/j.cej.2013.06.016

Google Scholar

[15] M. Chen, L. Cui, C. H. Li. Adsorption, desorption and condensation of nitrobenzene solution from active carbon: A comparison of two cyclodextrins and two surfactants. J. Hazard. Mater. 162 (2009) 23-28.

DOI: 10.1016/j.jhazmat.2008.05.006

Google Scholar

[16] C. Y. Shen, X. H. Yang, Y. Wang. Complexation of capsaicin with beta-cyclodextrins to improve pesticide formulations: effect on aqueous solubility, dissolution rate, stability and soil adsorption. J. Incl. Phenom. Macro. 72 (2012) 263-274.

DOI: 10.1007/s10847-011-9971-0

Google Scholar

[17] A. Z. M. Badruddoza, J. W. Li, K. Hidajat. Selective recognition and separation of nucleosides using carboxymethyl-beta-cyclodextrin functionalized hybrid magnetic nanoparticles. Colloid Surface B. 92(2012) 223-231.

DOI: 10.1016/j.colsurfb.2011.11.042

Google Scholar